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DeepFake, DeepVoice, …
Significant Increase of SCAMs
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Hackers Are Leveraging AI



AI Cyber Challenge

• Using AI, fully automatically find and patch vulnerabilities

• Announced (Aug. ‘23.)

• Semi-final (Aug. ‘24.)
- 42 teams competed
- Qualified 7 teams got $2M each

• Final (Aug. ‘25.)
- 1st  : $4M
- 2nd : $3M
- 3rd : $1.5M
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➔$4,000,000





Scoreboard breakdown

Team

Team 
Total 
Score

%
Correct

Submission (r)

Vulnerability 
Discovery 

Score 
(VDS)

Program 
Repaid 
Score 
(PRS)

SARIF 
Assessment 

Score
(SAS)

Bundle
Score
(BDL)

Team Atlanta (9caa56) 392.76 91.27% 79.71 171.10 5.99 136.38

Trail of Bits (309958) 219.35 89.33% 52.49 101.21 1.00 65.29

Theori (3fad2e) 210.68 44.44% 58.12 110.34 4.97 53.57

All You Need IS A Fuzzing Brain (1b9bb5) 153.70 53.77% 54.81 77.60 6.52 28.28

Shellphish (463287) 135.89 94.83% 47.94 54.31 8.47 25.29

42-b3yond-6ug (ee79d5) 105.03 89.23% 70.37 14.22 9.80 10.97

Lacrosse (e87a4d) 9.59 42.86% 1.68 5.43 0.00 3.62



What counts for finals?

Proof-Of-Vulnerability (POV)

➔Input data to reproduce vulnerability 
crash in harness

PATCH

➔Unified diff source code fix for 
vulnerabilities

SARIF Assessment

➔Structured reporting format for 
vulnerability details

BUNDLE

➔Grouping of related PoV, patch, 
and SARIF submissions

DELTA SCAN

➔Challenge analyzing base code plus 
applied diff changes

FULL SCAN

➔Challenge analyzing entire code 
base



All projects adapted into challenges
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Total Known Vulnerabilities

70

Vulnerabilities discovered

54 (77%)

Vulnerabilities patched

43 (61%)

Real World Vulns discovered

18

Average time to patch

45 min

Total LOC analyzed

54M

Total spent (Compute + LLM)

$359k

Total LLM queries

1.9M

LLM Spend

$82k

FINAL ROUND DATA POINTS



COST PER TASK SUCCESS
(PoV, Patch, SARIF, or a Bundle)



Agenda

1. Introduction to AIxCC

2. Atlantis and Key Strategies

3. Discussion: Future of Cybersecurity
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Atlantis: AI-driven Threat Localization, Analysis, 
aNd Triage Intelligence System



Atlantis: AI-driven Threat Localization, Analysis, 
aNd Triage Intelligence System

LLM Usage



Atlantis: AI-driven Threat Localization, Analysis, 
aNd Triage Intelligence System

Key Strategy: Leveraging Diversity and Complementary Strengths



Bug Finding Stats (Internal Analysis)

Engine Total POVs Failed POVs Dup POVs
Passed
POVs

Contribution Rate Total Patches Passed Patches

Multilang 393 299 10 84 71.20% 30 29

C 185 99 68 18 15.30% 2 2

Java 424 336 73 15 12.70% 14 9

unknown 1 0 0 1 0.80% 1 1

TOTAL 1003 734 151 118 100.00% 47 41
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Key Strategy: Leveraging Diversity and Complementary Strengths
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Atlantis-Multilang Stats

- Total 11 members:
- SRA (2): HyungSeok, Soyeon
- SR (4): Dohyeok, Kangsu, Eunsoo, Sangwoo
- Georgia Tech (5): Dongkwan, Dae R., Woosun, Jiho, Joshua

- Atlantis: ~7,500 commits, ~600 merged PRs
- Multilang: ~4,700 commits, ~500 merged PRs 
- …

=> On average, a team member merged two PRs every week!  
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Typical Challenge Workflow
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Typical Challenge Workflow
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Background: How to improve fuzzers

def Fuzz(state):
  while True:
    conf = Schedule(state)      // Select a seed
    inputs = InputGen(conf)     // Mutate the selected seed
    results = InputEval(inputs) // Execute the new input
    state = Update(state, conf, inputs, results) 
                                // Update corpus if interesting
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    inputs = InputGen(conf)     // Mutate the selected seed
    results = InputEval(inputs) // Execute the new input
    state = Update(state, conf, inputs, results) 
                                // Update corpus if interesting
  

- Coverage-guided Fuzzing

- Directed Fuzzing
  Guide fuzzers to reach the target lines

- Hybrid Fuzzing

  Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

  Use dictionary when mutating seeds

- Grammar-based Fuzzing

  Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
  Tailor fuzzers for the specific target program
…



Background: How to improve fuzzers

def Fuzz(state):
  while True:
    conf = Schedule(state)      // Select a seed
    inputs = InputGen(conf)     // Mutate the selected seed
    results = InputEval(inputs) // Execute the new input
    state = Update(state, conf, inputs, results) 
                                // Update corpus if interesting
  

- Coverage-guided Fuzzing

- Directed Fuzzing
  Guide fuzzers to reach the target lines

- Hybrid Fuzzing

  Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

  Use dictionary when mutating seeds

- Grammar-based Fuzzing

  Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
  Tailor fuzzers for the specific target program
…

Existing techniques require

- target-specific analysis
- or pre-defined values

Existing tools have a lot of limitations:
- Only one of C or Java is supported

- Do not support some compiler version
- Results are not good enough
- Incomplete

- Outdated
- Need manual analysis

- …



Background: How to improve fuzzers

def Fuzz(state):
  while True:
    conf = Schedule(state)      // Select a seed
    inputs = InputGen(conf)     // Mutate the selected seed
    results = InputEval(inputs) // Execute the new input
    state = Update(state, conf, inputs, results) 
                                // Update corpus if interesting
  

- Coverage-guided Fuzzing

- Directed Fuzzing
Guide fuzzers to reach the target lines

- Hybrid Fuzzing

Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

Use dictionary when mutating seeds

- Grammar-based Fuzzing

Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
Tailor fuzzers for the specific target program

…

Let LLMs handle those!



Atlantis-Multilang: UniAFL



Atlantis-Multilang: UniAFL

Key Strategy: Diverse Input Gen. Modules with Multi-Level LLM Utilization



Atlantis-Multilang: UniAFL

LLM Usage: X

LLM Usage: High

LLM Usage: Mid

LLM Usage: Low
LLM Usage: Mid



Low Usage: Dictionary-Based Input Generation

● Observation
○ Fuzzers often get stuck on comparison statements

○ (non-reasoning) LLMs work well for small datasets



Low Usage: Dictionary-Based Input Generation

1) Given an executed function, generate tokens

2) Mutate the input with generated tokens

1) Executing an input 2) Collect executed functions

…

ngx_http_process_request_headers
…

3) Generate tokens for each function

ngx_http_process_request_headers:

  {GET, POST, …}

4) Mutate the input



Low Usage: Dictionary-Based Input Generation

1) Given an executed function, generate tokens

2) Mutate the input with generated tokens

1) Executing an input 2) Collect executed functions

…

ngx_http_process_request_headers
…

3) Generate tokens for each function

ngx_http_process_request_headers:

  {GET, POST, …}

4) Mutate the input

How about analyzing an input structure?



Mid Usage: LLM-Opinionated Structured Input Generation

INPUT ::= COMMAND_CNT { size: 4 }
          COMMAND[COMMAND_CNT]

COMMAND ::= SET_SIZE
          | SET_FILTER

SET_SIZE ::= OPCODE { size: 4, value: 0 }
             SIZE { size: 4 }

SET_FILTER ::= OPCODE { size: 4, value: 1 }
               SIZE { size: 4 }
               DATA { size: SIZE }



Mid Usage: LLM-Opinionated Structured Input Generation

INPUT ::= COMMAND_CNT { size: 4 }
          COMMAND[COMMAND_CNT]

COMMAND ::= SET_SIZE
          | SET_FILTER

SET_SIZE ::= OPCODE { size: 4, value: 0 }
             SIZE { size: 4 }

SET_FILTER ::= OPCODE { size: 4, value: 1 }
               SIZE { size: 4 }
               DATA { size: SIZE }

Can LLM directly find bugs and generate input blobs?



High Usage: Program Analysis and Bug Finding



High Usage: Program Analysis and Bug Finding

● How can we scale up LLM’s code analysis?

● How can we avoid hallucination?

● How can we integrate and coordinate multiple LLM response?
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- Instead of asking LLM to return “AAAAAAAAAA…”

- Create a python script that generates a single blob
- def create_payload() –> bytes:

- return “A”*1000

- LLM results are not deterministic

Blobgen Agent

BGA

Blobgen Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

Blobgen (A->C) Blobgen (A->D)
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How about generating multiple blobs?



Generator Agent
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- Create a python script that generates multiple blobs
- Expecting one of the blobs would reach the target point

- def generate(rnd: random.Random) -> bytes:

- Explore conditions probabilistically
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- Create a python script that generates multiple blobs
- Expecting one of the blobs would reach the target point

- def generate(rnd: random.Random) -> bytes:

- Explore conditions probabilistically

What if a target path is too long or too complex?



Mutator Agent
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def mutate(rnd: random.Random, seed: bytes) -> bytes:
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def mutate(rnd: random.Random, seed: bytes) -> bytes:



generator_iterX.py, …

Workflow: Continuous Iteration

blobgen_iterX.py, …

mutator_iterX.py, …



- Prepare:

- System prompt

- Harness code

- Diff code (if it is delta mode) 



Final Goal

Workflow

Context (LLM may have knowledge)

Example (single shot)

Gaslighting



Added XML-style tags

- Anthropic: Use XML tags to structure your 
prompts

Referred line number format ([#])

- Microsoft: RUSTASSISTANT: Using LLMs to 
Fix Compilation Errors in Rust Code

- Additional “:” to separate the code and line 

number

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf


Let LLM think two phases



- Select top 3 interesting functions
- <INTERESTING_FUNC_LIST>

- function1,function2,function3

- </INTERESTING_FUNC_LIST>

- Check the function is:

- In the coverage info

- Not already in the prompt

- Annotate w/ comments
- Referred from Google DeepMind: 

NExT: Teaching Large Language 

Models to Reason about Code 

Execution

First, describe What we will give!

Mark using @VISITED

Typically, this is not 

used in comments

https://arxiv.org/pdf/2404.14662
https://arxiv.org/pdf/2404.14662
https://arxiv.org/pdf/2404.14662


+ Crash Logs, Failure Logs



+ Crash Logs, Failure Logs

Self-Evolving Exploit Generation



Building Known Struct Information

- FuzzedDataProvider
- Good for fuzzers, bad for LLMs

- "data byte" and "choice bytes"

- Consumes primitive types from the back

- Consumes data types from the beginning

- Other customized behaviors (e.g., consumeInt(min, max))

- Java ByteBuffer
- Consumes integer in a big-endian way

- e.g., JenkinsTwo

- b'\r\x00\x00\x00\x01\x00\x00\x00x-evil-backdoor\x00breakin the law\x00jazze'
- b'\x00\x00\x00\r\x00\x00\x00\x01x-evil-backdoor\x00breakin the law\x00jazze'

- Custom structs
- e.g., ServletFileUpload (multipart-based file upload)
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- e.g., JenkinsTwo

- b'\r\x00\x00\x00\x01\x00\x00\x00x-evil-backdoor\x00breakin the law\x00jazze'
- b'\x00\x00\x00\r\x00\x00\x00\x01x-evil-backdoor\x00breakin the law\x00jazze'

- Custom structs
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Initial guiding prompt (Old)

Directly giving instructions 
were not successful 

Potential causes?

- LLM’s focus is to write an exploit

- Instructions for custom structures may 

have distracted?

- …



LLM will generate script using libfdp

Selectively add methods based on 

the current source code context

libFDP has ~65 producer functions

Initial guiding prompt (Old)
libFDP-based guiding 

prompt (New)

Write a wrapper library, Let LLM 
import the library in its exploit



Building Domain Knowledge

Prepare the description and exploit guide
for each high-level vulnerability category



Different models have different characteristics?

Even within the same model family?

Newer model can have an insufficient training dataset?

Internal Pilot Testing Results



Different models have different characteristics?

Even within the same model family?

Newer model can have an insufficient training dataset?

It is possible that each model 

may require different prompts 

to achieve the best result

Internal Pilot Testing Results



For exploit generation, Claude Sonnet 4 was efficient

Internal Pilot Testing Results



!!

• Generator found a 0-day in Wireshark

• Mutator found a 0-day in Dicoogle



Findings

• Context engineering is a critical component of agentic systems

- Can we build LLM-friendly instructions?

- Can we decide what do include and what to exclude?

- How to effectively bring up relevant context (e.g., agent memory, …)

• Think of integration layers not to distract LLM’s contextual reasoning.

• Self-evolving exploit will be is the standards of vulnerability research



Findings

• Context engineering is a critical component of agentic systems

- Can we build LLM-friendly instructions?

- Can we decide what do include and what to exclude?

- How to effectively bring up relevant context (e.g., agent memory, …)

• Think of integration layers not to distract LLM’s contextual reasoning.

• Self-evolving exploit will be is the standards of vulnerability research

Are we done with the engineering?



LLM Failsafe Logic

- Rate Limit
- Step 1: Use exponential backoff upto 60 s, and retry 5 times
- Step 2: Switch to another model

 claude-sonnet-4 → claude-opus-4
 claude-opus-4 → claude-sonnet-4

- Step 3: If it fails multiple times, use o3

- Context Limit
- Step 1: Switch to a large context model

 Gemini-2.5-pro (1M context window)

- Step 2: If it fails, switch to a secondary model
 gpt-4.1 (1M context window)

- Unresolvable errors
- E.g., exceeds Budget, quota error
- → Immediately exit



Logging, Observability, and 

Reproducibility Do Matter



E2E Evaluation Framework

Continuous evaluation is necessary



Agenda

1. Introduction to AIxCC

2. Atlantis and Key Strategies

3. Discussion: Future of Cybersecurity
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Two of the top three teams are from industry;
Integrating their CRSes into real products



XBOW

XBOW’s story is pretty well-known these days



CTF Benchmarks

- InterCode-CTF (NeurIPS’23) + extension
- 33 General, 27 Reversing, 19 Crypto, 15 Forensic, 4 Pwnable, 2 Web = 100 challs

- PicoCTF

- NYU CTF Bench (NeurIPS’24)
- 200 CTF challenges (2017 – 2023 CSAW CTF)

- CyBench (ICLR’25 Oral)
- 40 CTF challenges (HackTheBox, Sekai CTF, Glacier, HKCert)

- Most papers are using CyBench (including Anthropic and Google)

- BountyBench (preprint)
- 25 diverse systems and 40 bug bounties ($10 – $30,485)

CTF Players are now actively adopting AI



I

CTF Players are now actively adopting AI



Evaluating AI’s capabilities in cybersecurity is now a hot topic



78

Attackers can run their own VulnOps



FINAL ROUND DATA POINTS

Total Known Vulnerabilities

70

Vulnerabilities discovered

54 (77%)

Vulnerabilities patched

43 (61%)

Real World Vulns discovered

18

Average time to patch

45 min

Total LOC analyzed

54M

Total spent (Compute + LLM)

$359k

Total LLM queries

1.9M

LLM Spend

$82k

Attackers can run their own VulnOps



The world changes today.
Automated patch development is:

Fast
Scalable

Cost-effective
Available / Open-source

AI + CRS = The Future Present
https://team-atlanta.github.io/

https://team-atlanta.github.io/
https://team-atlanta.github.io/
https://team-atlanta.github.io/


draw me an artistic wallpaper.

a hacker is in the center.

left half of the wallpaper is for whitehat hacker.

right half of the wallpaper is for blackhat hacker.

also, it should be related to modern, digital, AI-related.

Thank You!
Questions?

https://0xdkay.me

https://0xdkay.me/
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