
Inside AI Cyber Challenge

Dongkwan Kim

Postdoc at SSLab, Georgia Tech

Team Atlanta

https://0xdkay.me

https://0xdkay.me/

DeepFake, DeepVoice, …
Significant Increase of SCAMs

2

3

Hackers Are Leveraging AI

AI Cyber Challenge

• Using AI, fully automatically find and patch vulnerabilities

• Announced (Aug. ‘23.)

• Semi-final (Aug. ‘24.)
- 42 teams competed
- Qualified 7 teams got $2M each

• Final (Aug. ‘25.)
- 1st : $4M
- 2nd : $3M
- 3rd : $1.5M

4

➔$4,000,000

Scoreboard breakdown

Team

Team
Total
Score

%
Correct

Submission (r)

Vulnerability
Discovery

Score
(VDS)

Program
Repaid
Score
(PRS)

SARIF
Assessment

Score
(SAS)

Bundle
Score
(BDL)

Team Atlanta (9caa56) 392.76 91.27% 79.71 171.10 5.99 136.38

Trail of Bits (309958) 219.35 89.33% 52.49 101.21 1.00 65.29

Theori (3fad2e) 210.68 44.44% 58.12 110.34 4.97 53.57

All You Need IS A Fuzzing Brain (1b9bb5) 153.70 53.77% 54.81 77.60 6.52 28.28

Shellphish (463287) 135.89 94.83% 47.94 54.31 8.47 25.29

42-b3yond-6ug (ee79d5) 105.03 89.23% 70.37 14.22 9.80 10.97

Lacrosse (e87a4d) 9.59 42.86% 1.68 5.43 0.00 3.62

What counts for finals?

Proof-Of-Vulnerability (POV)

➔Input data to reproduce vulnerability
crash in harness

PATCH

➔Unified diff source code fix for
vulnerabilities

SARIF Assessment

➔Structured reporting format for
vulnerability details

BUNDLE

➔Grouping of related PoV, patch,
and SARIF submissions

DELTA SCAN

➔Challenge analyzing base code plus
applied diff changes

FULL SCAN

➔Challenge analyzing entire code
base

All projects adapted into challenges

28

Total Known Vulnerabilities

70

Vulnerabilities discovered

54 (77%)

Vulnerabilities patched

43 (61%)

Real World Vulns discovered

18

Average time to patch

45 min

Total LOC analyzed

54M

Total spent (Compute + LLM)

$359k

Total LLM queries

1.9M

LLM Spend

$82k

FINAL ROUND DATA POINTS

COST PER TASK SUCCESS
(PoV, Patch, SARIF, or a Bundle)

Agenda

1. Introduction to AIxCC

2. Atlantis and Key Strategies

3. Discussion: Future of Cybersecurity

12

Atlantis: AI-driven Threat Localization, Analysis,
aNd Triage Intelligence System

Atlantis: AI-driven Threat Localization, Analysis,
aNd Triage Intelligence System

LLM Usage

Atlantis: AI-driven Threat Localization, Analysis,
aNd Triage Intelligence System

Key Strategy: Leveraging Diversity and Complementary Strengths

Bug Finding Stats (Internal Analysis)

Engine Total POVs Failed POVs Dup POVs
Passed
POVs

Contribution Rate Total Patches Passed Patches

Multilang 393 299 10 84 71.20% 30 29

C 185 99 68 18 15.30% 2 2

Java 424 336 73 15 12.70% 14 9

unknown 1 0 0 1 0.80% 1 1

TOTAL 1003 734 151 118 100.00% 47 41

16

Key Strategy: Leveraging Diversity and Complementary Strengths

Bug Finding Stats (Internal Analysis)

Engine Total POVs Failed POVs Dup POVs
Passed
POVs

Contribution Rate Total Patches Passed Patches

Multilang 393 299 10 84 71.20% 30 29

C 185 99 68 18 15.30% 2 2

Java 424 336 73 15 12.70% 14 9

unknown 1 0 0 1 0.80% 1 1

TOTAL 1003 734 151 118 100.00% 47 41

17

Key Strategy: Leveraging Diversity and Complementary Strengths

18

Atlantis-Multilang Stats

- Total 11 members:
- SRA (2): HyungSeok, Soyeon
- SR (4): Dohyeok, Kangsu, Eunsoo, Sangwoo
- Georgia Tech (5): Dongkwan, Dae R., Woosun, Jiho, Joshua

- Atlantis: ~7,500 commits, ~600 merged PRs
- Multilang: ~4,700 commits, ~500 merged PRs
- …

=> On average, a team member merged two PRs every week!

19

20

Typical Challenge Workflow

21

Typical Challenge Workflow

22

Typical Challenge Workflow

23

Typical Challenge Workflow

Typical Challenge Workflow

24

Background: How to improve fuzzers

def Fuzz(state):
 while True:
 conf = Schedule(state) // Select a seed
 inputs = InputGen(conf) // Mutate the selected seed
 results = InputEval(inputs) // Execute the new input
 state = Update(state, conf, inputs, results)
 // Update corpus if interesting

Background: How to improve fuzzers

def Fuzz(state):
 while True:
 conf = Schedule(state) // Select a seed
 inputs = InputGen(conf) // Mutate the selected seed
 results = InputEval(inputs) // Execute the new input
 state = Update(state, conf, inputs, results)
 // Update corpus if interesting

- Coverage-guided Fuzzing

- Directed Fuzzing
 Guide fuzzers to reach the target lines

- Hybrid Fuzzing

 Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

 Use dictionary when mutating seeds

- Grammar-based Fuzzing

 Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
 Tailor fuzzers for the specific target program
…

Background: How to improve fuzzers

def Fuzz(state):
 while True:
 conf = Schedule(state) // Select a seed
 inputs = InputGen(conf) // Mutate the selected seed
 results = InputEval(inputs) // Execute the new input
 state = Update(state, conf, inputs, results)
 // Update corpus if interesting

- Coverage-guided Fuzzing

- Directed Fuzzing
 Guide fuzzers to reach the target lines

- Hybrid Fuzzing

 Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

 Use dictionary when mutating seeds

- Grammar-based Fuzzing

 Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
 Tailor fuzzers for the specific target program
…

Existing techniques require

- target-specific analysis
- or pre-defined values

Existing tools have a lot of limitations:
- Only one of C or Java is supported

- Do not support some compiler version
- Results are not good enough
- Incomplete

- Outdated
- Need manual analysis

- …

Background: How to improve fuzzers

def Fuzz(state):
 while True:
 conf = Schedule(state) // Select a seed
 inputs = InputGen(conf) // Mutate the selected seed
 results = InputEval(inputs) // Execute the new input
 state = Update(state, conf, inputs, results)
 // Update corpus if interesting

- Coverage-guided Fuzzing

- Directed Fuzzing
Guide fuzzers to reach the target lines

- Hybrid Fuzzing

Employ Concolic Executor to generate new inputs

- Dictionary-based Fuzzing

Use dictionary when mutating seeds

- Grammar-based Fuzzing

Use grammar of inputs for input gen./mut.

- Target-specific Fuzzing
Tailor fuzzers for the specific target program

…

Let LLMs handle those!

Atlantis-Multilang: UniAFL

Atlantis-Multilang: UniAFL

Key Strategy: Diverse Input Gen. Modules with Multi-Level LLM Utilization

Atlantis-Multilang: UniAFL

LLM Usage: X

LLM Usage: High

LLM Usage: Mid

LLM Usage: Low
LLM Usage: Mid

Low Usage: Dictionary-Based Input Generation

● Observation
○ Fuzzers often get stuck on comparison statements

○ (non-reasoning) LLMs work well for small datasets

Low Usage: Dictionary-Based Input Generation

1) Given an executed function, generate tokens

2) Mutate the input with generated tokens

1) Executing an input 2) Collect executed functions

…

ngx_http_process_request_headers
…

3) Generate tokens for each function

ngx_http_process_request_headers:

 {GET, POST, …}

4) Mutate the input

Low Usage: Dictionary-Based Input Generation

1) Given an executed function, generate tokens

2) Mutate the input with generated tokens

1) Executing an input 2) Collect executed functions

…

ngx_http_process_request_headers
…

3) Generate tokens for each function

ngx_http_process_request_headers:

 {GET, POST, …}

4) Mutate the input

How about analyzing an input structure?

Mid Usage: LLM-Opinionated Structured Input Generation

INPUT ::= COMMAND_CNT { size: 4 }
 COMMAND[COMMAND_CNT]

COMMAND ::= SET_SIZE
 | SET_FILTER

SET_SIZE ::= OPCODE { size: 4, value: 0 }
 SIZE { size: 4 }

SET_FILTER ::= OPCODE { size: 4, value: 1 }
 SIZE { size: 4 }
 DATA { size: SIZE }

Mid Usage: LLM-Opinionated Structured Input Generation

INPUT ::= COMMAND_CNT { size: 4 }
 COMMAND[COMMAND_CNT]

COMMAND ::= SET_SIZE
 | SET_FILTER

SET_SIZE ::= OPCODE { size: 4, value: 0 }
 SIZE { size: 4 }

SET_FILTER ::= OPCODE { size: 4, value: 1 }
 SIZE { size: 4 }
 DATA { size: SIZE }

Can LLM directly find bugs and generate input blobs?

High Usage: Program Analysis and Bug Finding

High Usage: Program Analysis and Bug Finding

● How can we scale up LLM’s code analysis?

● How can we avoid hallucination?

● How can we integrate and coordinate multiple LLM response?

High Usage: Program Analysis and Bug Finding

● How can we scale up LLM’s code analysis?

● How can we avoid hallucination?

● How can we integrate and coordinate multiple LLM response?

High Usage: Program Analysis and Bug Finding

● How can we scale up LLM’s code analysis?

● How can we avoid hallucination?

● How can we integrate and coordinate multiple LLM response?

High Usage: Program Analysis and Bug Finding

● How can we scale up LLM’s code analysis?

● How can we avoid hallucination?

● How can we integrate and coordinate multiple LLM response?

- Instead of asking LLM to return “AAAAAAAAAA…”

- Create a python script that generates a single blob
- def create_payload() –> bytes:

- return “A”*1000

- LLM results are not deterministic

Blobgen Agent

BGA

Blobgen Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

Blobgen (A->C) Blobgen (A->D)

- Instead of asking LLM to return “AAAAAAAAAA…”

- Create a python script that generates a single blob
- def create_payload() –> bytes:

- return “A”*1000

- LLM results are not deterministic

Blobgen Agent

BGA

Blobgen Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

Blobgen (A->C) Blobgen (A->D)

- Instead of asking LLM to return “AAAAAAAAAA…”

- Create a python script that generates a single blob
- def create_payload() –> bytes:

- return “A”*1000

- LLM results are not deterministic

Blobgen Agent

BGA

Blobgen Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

Blobgen (A->C) Blobgen (A->D)

How about generating multiple blobs?

Generator Agent

A

B C

D E

A

B C

D E

Generator

A->D

BGA

Blobgen Agent

Generator Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

A

B C

D E

Generator

A->D

Blobgen (A->C) Blobgen (A->D)

Generator (A->D)Generator (A->C, A->E)

- Create a python script that generates multiple blobs
- Expecting one of the blobs would reach the target point

- def generate(rnd: random.Random) -> bytes:

- Explore conditions probabilistically

Generator Agent

A

B C

D E

A

B C

D E

Generator

A->D

BGA

Blobgen Agent

Generator Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

A

B C

D E

Generator

A->D

Blobgen (A->C) Blobgen (A->D)

Generator (A->D)Generator (A->C, A->E)

- Create a python script that generates multiple blobs
- Expecting one of the blobs would reach the target point

- def generate(rnd: random.Random) -> bytes:

- Explore conditions probabilistically

Generator Agent

A

B C

D E

A

B C

D E

Generator

A->D

BGA

Blobgen Agent

Generator Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

A

B C

D E

Generator

A->D

Blobgen (A->C) Blobgen (A->D)

Generator (A->D)Generator (A->C, A->E)

- Create a python script that generates multiple blobs
- Expecting one of the blobs would reach the target point

- def generate(rnd: random.Random) -> bytes:

- Explore conditions probabilistically

What if a target path is too long or too complex?

Mutator Agent

A

B C

D E

A

B C

D E

A

B C

D E

Mutator

A->C

Mutator

C->D

A

B C

D E

A

B C

D E

Generator

A->D

BGA

Blobgen Agent

Generator Agent

Mutator Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

A

B C

D E

Generator

A->D

Blobgen (A->C) Blobgen (A->D)

Generator (A->C, A->E) Generator (A->D)

Mutator (A->C) Mutator (C->D)+ Edge Deduplication

def mutate(rnd: random.Random, seed: bytes) -> bytes:

Mutator Agent

A

B C

D E

A

B C

D E

A

B C

D E

Mutator

A->C

Mutator

C->D

A

B C

D E

A

B C

D E

Generator

A->D

BGA

Blobgen Agent

Generator Agent

Mutator Agent

A

B C

D E

A

B C

D E

Blobgen

A->D A

B C

D E

Blobgen

A->D

A

B C

D E

Generator

A->D

Blobgen (A->C) Blobgen (A->D)

Generator (A->C, A->E) Generator (A->D)

Mutator (A->C) Mutator (C->D)+ Edge Deduplication

def mutate(rnd: random.Random, seed: bytes) -> bytes:

generator_iterX.py, …

Workflow: Continuous Iteration

blobgen_iterX.py, …

mutator_iterX.py, …

- Prepare:

- System prompt

- Harness code

- Diff code (if it is delta mode)

Final Goal

Workflow

Context (LLM may have knowledge)

Example (single shot)

Gaslighting

Added XML-style tags

- Anthropic: Use XML tags to structure your
prompts

Referred line number format ([#])

- Microsoft: RUSTASSISTANT: Using LLMs to
Fix Compilation Errors in Rust Code

- Additional “:” to separate the code and line

number

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2024/08/paper.pdf

Let LLM think two phases

- Select top 3 interesting functions
- <INTERESTING_FUNC_LIST>

- function1,function2,function3

- </INTERESTING_FUNC_LIST>

- Check the function is:

- In the coverage info

- Not already in the prompt

- Annotate w/ comments
- Referred from Google DeepMind:

NExT: Teaching Large Language

Models to Reason about Code

Execution

First, describe What we will give!

Mark using @VISITED

Typically, this is not

used in comments

https://arxiv.org/pdf/2404.14662
https://arxiv.org/pdf/2404.14662
https://arxiv.org/pdf/2404.14662

+ Crash Logs, Failure Logs

+ Crash Logs, Failure Logs

Self-Evolving Exploit Generation

Building Known Struct Information

- FuzzedDataProvider
- Good for fuzzers, bad for LLMs

- "data byte" and "choice bytes"

- Consumes primitive types from the back

- Consumes data types from the beginning

- Other customized behaviors (e.g., consumeInt(min, max))

- Java ByteBuffer
- Consumes integer in a big-endian way

- e.g., JenkinsTwo

- b'\r\x00\x00\x00\x01\x00\x00\x00x-evil-backdoor\x00breakin the law\x00jazze'
- b'\x00\x00\x00\r\x00\x00\x00\x01x-evil-backdoor\x00breakin the law\x00jazze'

- Custom structs
- e.g., ServletFileUpload (multipart-based file upload)

Building Known Struct Information

- FuzzedDataProvider
- Good for fuzzers, bad for LLMs

- "data byte" and "choice bytes"

- Consumes primitive types from the back

- Consumes data types from the beginning

- Other customized behaviors (e.g., consumeInt(min, max))

- Java ByteBuffer
- Consumes integer in a big-endian way

- e.g., JenkinsTwo

- b'\r\x00\x00\x00\x01\x00\x00\x00x-evil-backdoor\x00breakin the law\x00jazze'
- b'\x00\x00\x00\r\x00\x00\x00\x01x-evil-backdoor\x00breakin the law\x00jazze'

- Custom structs
- e.g., ServletFileUpload (multipart-based file upload)

Initial guiding prompt (Old)

Directly giving instructions
were not successful

Potential causes?

- LLM’s focus is to write an exploit

- Instructions for custom structures may

have distracted?

- …

LLM will generate script using libfdp

Selectively add methods based on

the current source code context

libFDP has ~65 producer functions

Initial guiding prompt (Old)
libFDP-based guiding

prompt (New)

Write a wrapper library, Let LLM
import the library in its exploit

Building Domain Knowledge

Prepare the description and exploit guide
for each high-level vulnerability category

Different models have different characteristics?

Even within the same model family?

Newer model can have an insufficient training dataset?

Internal Pilot Testing Results

Different models have different characteristics?

Even within the same model family?

Newer model can have an insufficient training dataset?

It is possible that each model

may require different prompts

to achieve the best result

Internal Pilot Testing Results

For exploit generation, Claude Sonnet 4 was efficient

Internal Pilot Testing Results

!!

• Generator found a 0-day in Wireshark

• Mutator found a 0-day in Dicoogle

Findings

• Context engineering is a critical component of agentic systems

- Can we build LLM-friendly instructions?

- Can we decide what do include and what to exclude?

- How to effectively bring up relevant context (e.g., agent memory, …)

• Think of integration layers not to distract LLM’s contextual reasoning.

• Self-evolving exploit will be is the standards of vulnerability research

Findings

• Context engineering is a critical component of agentic systems

- Can we build LLM-friendly instructions?

- Can we decide what do include and what to exclude?

- How to effectively bring up relevant context (e.g., agent memory, …)

• Think of integration layers not to distract LLM’s contextual reasoning.

• Self-evolving exploit will be is the standards of vulnerability research

Are we done with the engineering?

LLM Failsafe Logic

- Rate Limit
- Step 1: Use exponential backoff upto 60 s, and retry 5 times
- Step 2: Switch to another model

 claude-sonnet-4 → claude-opus-4
 claude-opus-4 → claude-sonnet-4

- Step 3: If it fails multiple times, use o3

- Context Limit
- Step 1: Switch to a large context model

 Gemini-2.5-pro (1M context window)

- Step 2: If it fails, switch to a secondary model
 gpt-4.1 (1M context window)

- Unresolvable errors
- E.g., exceeds Budget, quota error
- → Immediately exit

Logging, Observability, and

Reproducibility Do Matter

E2E Evaluation Framework

Continuous evaluation is necessary

Agenda

1. Introduction to AIxCC

2. Atlantis and Key Strategies

3. Discussion: Future of Cybersecurity

72

Two of the top three teams are from industry;
Integrating their CRSes into real products

XBOW

XBOW’s story is pretty well-known these days

CTF Benchmarks

- InterCode-CTF (NeurIPS’23) + extension
- 33 General, 27 Reversing, 19 Crypto, 15 Forensic, 4 Pwnable, 2 Web = 100 challs

- PicoCTF

- NYU CTF Bench (NeurIPS’24)
- 200 CTF challenges (2017 – 2023 CSAW CTF)

- CyBench (ICLR’25 Oral)
- 40 CTF challenges (HackTheBox, Sekai CTF, Glacier, HKCert)

- Most papers are using CyBench (including Anthropic and Google)

- BountyBench (preprint)
- 25 diverse systems and 40 bug bounties ($10 – $30,485)

CTF Players are now actively adopting AI

I

CTF Players are now actively adopting AI

Evaluating AI’s capabilities in cybersecurity is now a hot topic

78

Attackers can run their own VulnOps

FINAL ROUND DATA POINTS

Total Known Vulnerabilities

70

Vulnerabilities discovered

54 (77%)

Vulnerabilities patched

43 (61%)

Real World Vulns discovered

18

Average time to patch

45 min

Total LOC analyzed

54M

Total spent (Compute + LLM)

$359k

Total LLM queries

1.9M

LLM Spend

$82k

Attackers can run their own VulnOps

The world changes today.
Automated patch development is:

Fast
Scalable

Cost-effective
Available / Open-source

AI + CRS = The Future Present
https://team-atlanta.github.io/

https://team-atlanta.github.io/
https://team-atlanta.github.io/
https://team-atlanta.github.io/

draw me an artistic wallpaper.

a hacker is in the center.

left half of the wallpaper is for whitehat hacker.

right half of the wallpaper is for blackhat hacker.

also, it should be related to modern, digital, AI-related.

Thank You!
Questions?

https://0xdkay.me

https://0xdkay.me/

	Slide 1: Inside AI Cyber Challenge
	Slide 2
	Slide 3
	Slide 4: AI Cyber Challenge
	Slide 5
	Slide 6
	Slide 7: Scoreboard breakdown
	Slide 8: What counts for finals?
	Slide 9: All projects adapted into challenges
	Slide 10: FINAL ROUND DATA POINTS
	Slide 11
	Slide 12: Agenda
	Slide 13: Atlantis: AI-driven Threat Localization, Analysis, aNd Triage Intelligence System
	Slide 14: Atlantis: AI-driven Threat Localization, Analysis, aNd Triage Intelligence System
	Slide 15: Atlantis: AI-driven Threat Localization, Analysis, aNd Triage Intelligence System
	Slide 16: Bug Finding Stats (Internal Analysis)
	Slide 17: Bug Finding Stats (Internal Analysis)
	Slide 18
	Slide 19: Atlantis-Multilang Stats
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Typical Challenge Workflow
	Slide 25: Background: How to improve fuzzers
	Slide 26: Background: How to improve fuzzers
	Slide 27: Background: How to improve fuzzers
	Slide 28: Background: How to improve fuzzers
	Slide 29: Atlantis-Multilang: UniAFL
	Slide 30: Atlantis-Multilang: UniAFL
	Slide 31: Atlantis-Multilang: UniAFL
	Slide 32: Low Usage: Dictionary-Based Input Generation
	Slide 33: Low Usage: Dictionary-Based Input Generation
	Slide 34: Low Usage: Dictionary-Based Input Generation
	Slide 35: Mid Usage: LLM-Opinionated Structured Input Generation
	Slide 36: Mid Usage: LLM-Opinionated Structured Input Generation
	Slide 37: High Usage: Program Analysis and Bug Finding
	Slide 38: High Usage: Program Analysis and Bug Finding
	Slide 39: High Usage: Program Analysis and Bug Finding
	Slide 40: High Usage: Program Analysis and Bug Finding
	Slide 41: High Usage: Program Analysis and Bug Finding
	Slide 42: Blobgen Agent
	Slide 43: Blobgen Agent
	Slide 44: Blobgen Agent
	Slide 45: Generator Agent
	Slide 46: Generator Agent
	Slide 47: Generator Agent
	Slide 48: Mutator Agent
	Slide 49: Mutator Agent
	Slide 50: Workflow: Continuous Iteration
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Building Known Struct Information
	Slide 59: Building Known Struct Information
	Slide 60
	Slide 61
	Slide 62: Building Domain Knowledge
	Slide 63
	Slide 64
	Slide 65
	Slide 66: !!
	Slide 67: Findings
	Slide 68: Findings
	Slide 69: LLM Failsafe Logic
	Slide 70
	Slide 71: E2E Evaluation Framework
	Slide 72: Agenda
	Slide 73
	Slide 74: XBOW
	Slide 75: CTF Benchmarks
	Slide 76: I
	Slide 77
	Slide 78
	Slide 79: FINAL ROUND DATA POINTS
	Slide 80: The world changes today. Automated patch development is: Fast Scalable Cost-effective Available / Open-source AI + CRS = The Future Present
	Slide 81

