
Scaling up Vulnerability Analysis of

IoT Devices with 

Heuristics and Binary Code Similarity

Advanced Penetration Testing Group
Dongkwan Kim @ Samsung SDS

Who Am I: Dongkwan Kim

• Passionate, self-motivated security researcher

• Education

• KAIST Ph.D. ’22 (M.S. ’16 and B.S ’14)

• Newbie researcher

• 7 top-tier papers (NDSS, USENIX Security, ACM CCS, …)

• 19+8 papers, 713 citations (as of Oct. 21, 2023)

• CTF Player

• Defcon finalist (’12, ’14, ’16, ’18, ’19)

• CTF winner (Whitehat, HDCON, Codegate, …)

IoT Ecosystem (In)Security

4

Smartphone
USIMApp

Gyro.GPS

WearablesPCWireless Router IP Camera

Base Station

IMS

Internet

Smart TV

Charging User
Database

VoLTESpecification

Blockchain

Cellular Network

Gateway

Car Smart Key Infotainment CAN

Controller

Drone

Cellular Network

IoT Ecosystem (In)Security

5

Smartphone
USI
M

App

Gyro.GPS

WearablesPCWireless Router IP Camera

Base Station

IMS

Internet

Smart TV

Charging User
Information

VoLTESpecification

Blockchain

Gateway

Car Smart Key Infotainment CAN

Controller

Drone

USIM
WISA’14

Gyro.
Sec’15,

NDSS’23

VoLTE
CCS’15

Charging
WISA’16

Gateway
EuroS&P’17

Specification
TMC’18

EOS
WOOT’19

IoT Routers / Camera
ACSAC’20, S&P’22,

TSE’22

CAN - ECU
NDA

Smart TV
NDA

Infotainment
NDA

Smart Key
NDA

Wearable
WISA’15

User Fingerprinting
Sec'22

Acc.
NDSS’23

EMI
NDSS’23

App
NDA

Baseband
NDSS’21, Sec’23

IoT Ecosystem (In)Security

6

Smartphone
USIMApp

Gyro.GPS

WearablesPCWireless Router IP Camera

Base Station

IMS

Internet

Smart TV

Charging User
Database

VoLTESpecification

Blockchain

Cellular Network

Gateway

Car Smart Key Infotainment CAN

Controller

Drone

Focus of this talk:
How to find vulnerabilities on numerous (>1k)

IoT routers/cameras for fun and profit?

(In)Security of Linux-Based IoT Devices
❖ 34.2 billion embedded devices will be in use in 2025*

– Wireless routers, IP cameras, ...

❖ Many botnets target IoT devices
– Mirai (Aug. 2016)
– Satori (Dec. 2017)
– Crypto (May. 2018)
– ECHOBOT (Dec. 2019)
– New Mirai variant (July 2020, 2021, 2023~)
➔ DDoS attacks: DynDNS (2016), GitHub (2018), ...

❖ Exposed to the Internet, especially web interfaces
– Shodan, ZoomEye
– Over 30 exploits in Mirai variants

7 *https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

Challenges in IoT Security Analysis
❖ The number of IoT devices are rapidly increasing
➔ Scalability is the key to analyze their threats

❖ Challenge: no development standards
– Opacity (Obscurity)
▪ Vendors do not release implementation details

– Diversity
▪ Numerous vendors, complex hardware/implementation diversity

➔ Scaling up the vulnerability analysis is challenging

8

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

❖ Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

❖ Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

❖ Firmware emulation and dynamic analysis
– Build a virtual environment mimicking a real device
– Run automated pentesting (e.g., Metasploit)
– Run fuzzers (e.g., AFL)

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

1

1

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

❖ Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

❖ Firmware emulation and dynamic analysis
– Build a virtual environment mimicking a real device
– Run automated pentesting (e.g., Metasploit)
– Run fuzzers (e.g., AFL)

❖ Firmware and static analysis
– Analyze firmware structure and memory layout
– Identify target functions
– Run symbolic execution (e.g., angr)

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

1
2

1

2

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

❖ Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

❖ Firmware emulation and dynamic analysis
– Build a virtual environment mimicking a real device
– Run automated pentesting (e.g., Metasploit)
– Run fuzzers (e.g., AFL)

❖ Firmware and static analysis
– Analyze firmware structure and memory layout
– Identify target functions
– Run symbolic execution (e.g., angr)

❖ Known vulnerability (1-day-based) analysis
– Build PoC exploits and run them (e.g., Metasploit)
– Build signatures and search them (e.g., BCSA)

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

1
2

3

1

3

2

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

❖ Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

❖ Firmware emulation and dynamic analysis
– Build a virtual environment mimicking a real device
– Run automated pentesting (e.g., Metasploit)
– Run fuzzers (e.g., AFL)

❖ Firmware and static analysis
– Analyze firmware structure and memory layout
– Identify target functions
– Run symbolic execution (e.g., angr)

❖ Known vulnerability (1-day-based) analysis
– Build PoC exploits and run them (e.g., Metasploit)
– Build signatures and search them (e.g., BCSA)

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

1
2

3

1

3

2

Existing Approaches

10

Years

Costin et. al.
(SEC’14)

FIE
(SEC’13)

Firmalice
(NDSS’15)

Costin et. al.
(AsiaCCS’16)

Firmadyne
(NDSS’16)

FirmPin
(BHUS’18)

Firm-AFL
(SEC’19)

P2IM
(SEC’20)

HALucinator
(SEC’20)

Pretender
(RAID’19)

Symbolic Execution Target System Emulation

Peripheral I/O Modeling

: Static Approach : Dynamic Approach

Manual / Heuristic Analysis

Cui et. al.
(NDSS’13)

...

...

...

...

...

➔Low emulation
 success rate (16.3%)

Existing Approaches

10

Years

Costin et. al.
(SEC’14)

FIE
(SEC’13)

Firmalice
(NDSS’15)

Costin et. al.
(AsiaCCS’16)

Firmadyne
(NDSS’16)

FirmPin
(BHUS’18)

Firm-AFL
(SEC’19)

P2IM
(SEC’20)

HALucinator
(SEC’20)

Pretender
(RAID’19)

Symbolic Execution Target System Emulation

Peripheral I/O Modeling

: Static Approach : Dynamic Approach

Manual / Heuristic Analysis

Cui et. al.
(NDSS’13)

...

...

...

...

...

❖ Custom kernel and library
– Hook system calls
– Mimic NVRAM-related functions

▪ *NVRAM: flash memory

❖ Emulating target firmware twice
– Collect useful logs (IP address, device name)
– Configure the system with the logs

Firmadyne: state-of-the-art firmware emulator

11

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Firmware

Firmadyne

QEMU Emulator

❖ Custom kernel and library
– Hook system calls
– Mimic NVRAM-related functions

▪ *NVRAM: flash memory

❖ Emulating target firmware twice
– Collect useful logs (IP address, device name)
– Configure the system with the logs

Firmadyne: state-of-the-art firmware emulator

11

Firmadyne can emulate only 183 of 1,124 (16.3%)
firmware images for web services

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Firmware

Firmadyne

QEMU Emulator

Motivating example: CVE-2014-3936
❖ Target

– D-Link DIR-505L

❖ Symptom
– Fails to configure network interface

❖ Possible causes
– Access to unsupported peripherals
– Retrieve unknown/improper values

❖ How to address
– Forcibly set up the network interface

12

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

D-Link
DIR-505L

CVE-2014-3036

Firmadyne

Motivating example: CVE-2014-3936
❖ Target

– D-Link DIR-505L

❖ Symptom
– Fails to configure network interface

❖ Possible causes
– Access to unsupported peripherals
– Retrieve unknown/improper values

❖ How to address
– Forcibly set up the network interface

12

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

D-Link
DIR-505L

CVE-2014-3036

Firmadyne

Motivating example: CVE-2014-3936
❖ Target

– D-Link DIR-505L

❖ Symptom
– Fails to configure network interface

❖ Possible causes
– Access to unsupported peripherals
– Retrieve unknown/improper values

❖ How to address
– Forcibly set up the network interface

12

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

D-Link
DIR-505L

CVE-2014-3036

brctl addif br0 eth0

Firmadyne

Motivating example: CVE-2017-5521
❖ Target

– NETGEAR R6250

❖ Symptom
– Fails to boot and run the web service

❖ Possible causes
– Incorrect init program
– Missing kernel module to handle IOCTL

❖ How to address
– Set the correct init program path
– Add an IOCTL wrapper

13

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521

Firmadyne

Motivating example: CVE-2017-5521
❖ Target

– NETGEAR R6250

❖ Symptom
– Fails to boot and run the web service

❖ Possible causes
– Incorrect init program
– Missing kernel module to handle IOCTL

❖ How to address
– Set the correct init program path
– Add an IOCTL wrapper

13

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521

Firmadyne

Motivating example: CVE-2017-5521
❖ Target

– NETGEAR R6250

❖ Symptom
– Fails to boot and run the web service

❖ Possible causes
– Incorrect init program
– Missing kernel module to handle IOCTL

❖ How to address
– Set the correct init program path
– Add an IOCTL wrapper

13

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521

Boot /sbin/preinit

Handle IOCTL

Firmadyne

Motivating example: CVE-2017-5521
❖ Target

– NETGEAR R6250

❖ Symptom
– Fails to boot and run the web service

❖ Possible causes
– Incorrect init program
– Missing kernel module to handle IOCTL

❖ How to address
– Set the correct init program path
– Add an IOCTL wrapper

13

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521

Boot /sbin/preinit

Handle IOCTL

Firmadyne

Simple heuristics are effective!

Our approach
❖ Goal

– Run admin web services for dynamic security analysis

❖ Requirements
– Emulated system should be reachable from the host
– Web services should be available

❖ Approach
– Investigate failure cases of Firmadyne
– Develop heuristics to satisfy the emulation requirements

14

FirmAE overview

15

Firmware

Dataset

Vendor Servers

Input

Firmware

Filesyste
m

Analysis Container

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &

Initialize

Network

Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Pre-Emulation Final Emulation

1 2

3

4

5

Failure Analysis

Examples of Developed Heuristics

16

Where Problem Heuristics

Boot Missing files or directories Extract path strings and create them
(e.g., /var, /etc)

Library
for

Virtualization
Unknown configuration values Search filesystem and original kernel

(e.g., /etc/nvram.default)

Network No network interface Forcibly configure a default interface
(e.g., eth0, 192.168.0.1)

Programs Unexecuted web server Forcibly run the server
(e.g., run httpd)

FirmAE overview

17

Firmware

Dataset

Vendor Servers

Input

Firmware

Filesyste
m

Analysis Container

Crash DB

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &

Initialize

Network

Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization

Emulation

DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Failure Analysis Systemization

Emulation Results (vs Firmadyne)

18

Firmadyne FirmAE
 Dataset Vendor Images Web Web

AnalysisSet
(Outdated)

D-Link 179 54 (30.17%) 167 (93.30%)
NETGEAR 73 5 (6.85%) 59 (80.82%)

TP-Link 274 30 (10.95%) 257 (93.80%)
Sub Total 526 89 (16.92%) 483 (91.83%)

LatestSet
(Latest)

D-Link 58 17 (29.31%) 48 (82.76%)
TP-Link 69 10 (14.49%) 54 (78.26%)

NETGEAR 101 7 (6.93%) 79 (78.22%)
TRENDnet 106 23 (21.70%) 63 (59.43%)

ASUS 107 25 (23.36%) 62 (57.94%)
Belkin 37 2 (5.41%) 22 (59.46%)

Linksys 55 8 (14.55%) 44 (80.00%)
Zyxel 20 0 (0%) 10 (50.00%)

Sub Total 553 92 (16.64%) 382 (69.08%)

CamSet
(Latest)

D-Link 26 0 (0%) 17 (65.38%)
TP-Link 6 0 (0%) 0 (0%)

TRENDnet 13 2 (15.38%) 10 (76.92%)
Sub Total 45 2 (4.44%) 27 (60.00%)

Total 1124 183 (16.28%) 892 (79.36%)

IP Cameras

Wireless
Routers

*Latest firmware images are checked as of Dec. 2018

x5

FirmAE overview

19

Firmware

Dataset

Vendor Servers

Input

Firmware

Filesyste
m

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &

Initialize

Network

Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization

Emulation

DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Failure Analysis Systemization Dynamic Analysis

Dynamic Analysis Results
❖ Dynamic security analysis

– Known vulnerabilities
▪ RouterSploit (set of known exploits)
▪ 14 (Firmadyne) ➔ 320 (FirmAE)

– New vulnerabilities
▪ RouterSploit + Simple custom fuzzer
▪ 23 vulns from 95 latest devices (affecting 6 vendors)

20

Description Total Vulns (Devices)

Information Leak 8 (157)
Command Injection 23 (112)

Authentication Bypass 2 (5)
Buffer Overflow 5 (7)

Motivating Observation
❖ Example vulnerability: CVE-2018-10106

– Permission bypass in “cgibin” reveals users’ private key
– Parameter can be over-written with a newline character (0x0a)

– Still appears in newer device versions (D-Link)
▪ CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376

– Appears in different venders (TRENDnet)
▪ CVE-2018-7034

❖ Potential reasons
– Improper version/update management
– Copy and paste buggy code

21

Known Vulnerability Analysis
❖ Dynamic analysis

– Build PoC exploits and run them
☞ Require successful emulation

☞ Architecture challenges (e.g., ARM, MIPS, PowerPC, Hexagon, ...)
☞ Dependency issues in peripherals (e.g., Camera, LED, MMIO access, ...)

☞ Require time for emulation and testing

❖ Static analysis
– Match known signatures
– Leverage Binary code similarity analysis (BCSA)
➔ Apply BCSA to find same/similar vulnerabilities in newer devices

22

Increasing Scalability
Preserving Low False Positive Rate

Binary Code Similarity Analysis
❖ Binary code similarity analysis (BCSA)

❖ Popular tasks
– Malware detection
– Plagiarism detection
– Authorship identification
– Vulnerability discovery

23

Known
Binary Code A

Unknown
Binary Code B

❖ Target
– Architecture (e.g., x86 -> ARM)
– Compiler (e.g., gcc -> clang)
– Optimization (e.g., O1 -> O3)
– Obfuscation (e.g., LLVM-Obfuscator)

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

24

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

25 *Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

BCSA Workflow

25

Pre-Semantic Features

❖Numeric features
– BB-level: # of instructions, …
– CFG-level: # of basic blocks, …
– CG-level: # of callers, …

❖ Non-Numeric features
– Raw bytes: N-gram, …
– Instructions: Assembly, IR, …
– Functions: Name, …

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

BCSA Workflow

25

Pre-Semantic Features Semantic Features

❖Numeric features
– BB-level: # of instructions, …
– CFG-level: # of basic blocks, …
– CG-level: # of callers, …

❖ Semantic features
– Symbolic constraints
– Runtime behavior (memory values, …)
– Program slices (data flow, …)
– Embedded vector (machine learning)
– …

❖ Non-Numeric features
– Raw bytes: N-gram, …
– Instructions: Assembly, IR, …
– Functions: Name, …

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

2014 2015 2016 20182017

BLEX

TEDEM Multi-k-MH DiscovRE

BinGo

BinDNN

FirmUp

Tracy Esh

GitZ

BinClone

BinSign

BinSequence BinArm

SANER18

WSB

BinGo-E

MockingBird

CACompare

BinMatch

MASES18

Zeek

Diff𝒂

VulSeeker

Kam1n0

Asm2Vec

2019 2020

ASE17

CoP

LoPD BinSim

IMF-SIM

InnerEye

BAR19i

SAFE

BAR19ii

FuncNet

Genius

Xmatch

Gemini

DeepBinDiff

ImOpt

ACCESS20

Patcheko

26

Studied 43 papers
in 27 venues

GitZ (PLDI’17)
❖ Remove/Rearrange IR instructions
❖ Rename variables/instructions

27

k-MinHash (SP’15)
❖ Disassemble with IDA Pro, translate to IR with pyvex
❖ For each bb, generate random inputs with Z3 and collect outputs
❖ Check k-multi MinHash for I/O pairs
❖ Propagate basic block matching to whole function

28

LoPD (ISSRE’14, TOR’16)

29 Code Obfuscation Against Symbolic Execution Attacks, ACSAC2016

discovRE (NDSS’16)
❖ Use numeric features
❖ Filter features based on their correlation and standard deviation
– highly correlated features help similar function detection
– features should not change according to compile options

❖ Filter target functions
– k-Nearest Neighbors (kNN)

30

Genius (CCS’16)
❖ Same numeric features
❖ Attributed CFG (ACFG)
❖ Feature encoding
– codebook with spectral clustering

31

Gemini (CCS’17)
❖ Same numeric features and create ACFG
❖ Convert ACFG to a vector using Structure2Vec
❖ Compare two ACFGs with Siamese architecture

32

.

wikipedia

VulSeeker (ASE’18)
❖ Use only instruction numeric features
❖ Same architecture with Gemini (CCS’17)
❖ Add program dependence graph

33

.

Asm2Vec (SP’19)
❖ Applying natural language processing (NLP) to BCSA
❖ Modify PV-DM to fit x86 assembly instructions

34

.

Word2Vec - CBOW

35 https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648

Word2Vec - CBOW

35 https://www.researchgate.net/figure/word2vec-CBOW-model_fig1_313247648

A cat catches a mouse

Doc2Vec - PV-DM

36 https://medium.com, amarbudhiraja, understanding-document-embeddings-of-doc2vec

Asm2Vec (SP’19)

37

Word2Vec - Vectors

38

Asm2Vec (SP’19) - Vectors

39

BCSA Features in Previous Literature

40

: used with machine learning

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

BCSA Features in Previous Literature

40

: used with machine learning

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Heavy use of complex semantic features (>84%)
➔ No clear justification

BCSA Features in Previous Literature

41

: used with machine learning

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Heavy use of complex machine learning (>90%)
➔ Hard to interpret/understand the results

42

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

42

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned
No same benchmark

43

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Only 2 released full dataset

44

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Insufficient benchmarks
(86% < 10,000 binaries)
(98% < 4 architectures)
➔ Hard to evaluate useful features

45

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

A few focused on
IoT vulnerability Analysis

Problems of Existing Studies
❖ In IoT devices, vulnerabilities can exist in

– Libraries or utility binaries
– Custom binaries (mostly, CGI binaries)

❖ Existing studies focus on only libraries or utility binaries
– Open-source packages (e.g., OpenSSL, bash, vsftpd, ...)
– Easy to generate training dataset

❖ None has analyzed custom binaries (e.g., CGI binaries)
– No available dataset (or vulnerability details)
– Not enough samples

46

What BCSA studies have focused on
None of BCSA studies targeted

❖ No available open-source tools
– Among 43 BCSA studies, 10 released their source code
– Among these 10 tools,

▪ Only 2 supports x86, ARM, MIPS (i.e., Gemini, VulSeeker)
– Most IoT devices are based on ARM/MIPS

❖ Limitations of Gemini and VulSeeker
– Do not have full source code
– Based on complex machine learning ➔ Hard to interpret/understand the results
– How about performance?

47

Problems of Existing Studies

Motivating Example: CVE-2015-1791
❖ VulSeeker released partial results without full source code

– Target firmware: Tomato Cisco M10v2 (router)
– Target vulnerability: ssl3_get_new_session_ticket in libssl.so
– Race condition causes double free (DoS)

❖ Approach
– Compile vulnerable OpenSSL package (v1.0.1f) with 48 compiler options
– Query each of the 48 functions in the target firmware
– Average the similarity scores for all functions

❖ Result
– VulSeeker found the vulnerability at Rank 21

48

Motivating Example: CVE-2015-1791
❖ VulSeeker released partial results without full source code

– Target firmware: Tomato Cisco M10v2 (router)
– Target vulnerability: ssl3_get_new_session_ticket in libssl.so
– Race condition causes double free (DoS)

❖ Approach
– Compile vulnerable OpenSSL package (v1.0.1f) with 48 compiler options
– Query each of the 48 functions in the target firmware
– Average the similarity scores for all functions

❖ Result
– VulSeeker found the vulnerability at Rank 21

48

Enough?

Our Approach
❖ Fundamental problems of existing BCSA studies

– No available dataset ➔ Establish a baseline benchmark (BinKit)
– Heavy use of machine learning ➔ Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features ➔ Investigate pre-semantic features

❖ Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries ➔ Establish ground truth dataset (FirmKit)
– No available tool & Not enough studies ➔ Empirically analyze firmware images

49

Our Approach
❖ Fundamental problems of existing BCSA studies

– No available dataset ➔ Establish a baseline benchmark (BinKit)
– Heavy use of machine learning ➔ Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features ➔ Investigate pre-semantic features

❖ Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries ➔ Establish ground truth dataset (FirmKit)
– No available tool & Not enough studies ➔ Empirically analyze firmware images

49

Building a Comprehensive Benchmark (BinKit)
❖ Compile GNU software packages
❖ Build ground truth by leveraging source file names and line numbers

50

Category Previous Options Our Options (Count)

Architecture 98% tested 4 x86, arm ,mips, mipseb
for 32, 64 bits (4x2=8)

Compiler 95% tested 5 GCC: v4~v8 (5)
Clang: v4~v7 (4)

Optimization 16% tested all opti-levels O0, O1, O2, O3, Os (5)
Noinline 5% tested Include (1)

PIE 0% tested Include (1)
Link Time Optimization 2% tested Include (1)

Obfuscation 26% tested Obfuscator-LLVM (4)

Building a Comprehensive Benchmark (BinKit)
❖ Compile GNU software packages
❖ Build ground truth by leveraging source file names and line numbers

50

Category Previous Options Our Options (Count)

Architecture 98% tested 4 x86, arm ,mips, mipseb
for 32, 64 bits (4x2=8)

Compiler 95% tested 5 GCC: v4~v8 (5)
Clang: v4~v7 (4)

Optimization 16% tested all opti-levels O0, O1, O2, O3, Os (5)
Noinline 5% tested Include (1)

PIE 0% tested Include (1)
Link Time Optimization 2% tested Include (1)

Obfuscation 26% tested Obfuscator-LLVM (4)243,128 binaries for 36,256,322 functions

Analyze Pre-Semantic Features
❖ Justify semantic features (84%) and machine learning (90% after 2019)

➔ Cannot understand the results
❖ Simple pre-semantic features

➔ Can understand the results

51

Numeric Level Feature Category Example

CFG-Level
(41 Features)

Graphic Basic Blocks, Edges, …

Computing Arithmetic, Logic, …

Data Manipulating Copy, Addressing, …

Control Transferring Jmp, Conditional Jmp, …

Category Mixing Arithmetic + Shifting, …

CG-Level
(6 Features)

Counting Unique Callers, Callees, Imported Callees

Including Duplicates Incoming Calls, Outgoing Calls, Imported Calls

Design an Interpretable Model (TikNib)
❖ An intuitive model to easily understand the results

❖ Relative difference of feature f of function A and B

52

𝑟𝑑𝑖𝑓𝑓(𝐴𝑓 − 𝐵𝑓) =
𝐴𝑓 − 𝐵𝑓

𝑚𝑎𝑥(𝐴𝑓, 𝐵𝑓)

Design an Interpretable Model (TikNib)
❖ An intuitive model to easily understand the results

❖ Relative difference of feature f of function A and B

❖ Similarity score of function A and B
– Average of the relative differences of all features from f1 to fN

– Any other scoring metric can be integrated (e.g., Jaccard index)

52

𝑟𝑑𝑖𝑓𝑓(𝐴𝑓 − 𝐵𝑓) =
𝐴𝑓 − 𝐵𝑓

𝑚𝑎𝑥(𝐴𝑓, 𝐵𝑓)

𝑠𝑐𝑜𝑟𝑒(𝐴, 𝐵) =
𝑟𝑑𝑖𝑓𝑓(𝐴𝑓1, 𝐵𝑓1) + ⋯ + 𝑟𝑑𝑖𝑓𝑓(𝐴𝑓𝑁, 𝐵𝑓𝑁)

𝑁

Experiment Methodology
❖ There exist over 36M functions

➔ We need a fast approach to obtain the tendency

❖ Utilize TP/TN pairs for each function λ (same as Gemini, VulSeeker)

❖ Greedily select features with ROC AUC
❖ 10-fold cross validation for each test

53

(λTarget, λTrue Positive) (λTarget, λTrue Negative)

Different Compiler Option

Same Compiler Option

54

: Exist in all 10 tests

Examples of Findings

55

Architecture has a small impact

x86 vs ARM 0.99
x86 vs MIPS 0.98

ARM vs MIPS 0.98
32-bit vs 64-bit (Bits) 0.99
Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90
O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99
Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00
vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98
vs Control Flow Flattening 0.98
vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Examples of Findings

55

Architecture has a small impact

x86 vs ARM 0.99
x86 vs MIPS 0.98

ARM vs MIPS 0.98
32-bit vs 64-bit (Bits) 0.99
Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90
O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99
Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00
vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98
vs Control Flow Flattening 0.98
vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Examples of Findings

55

Architecture has a small impact

x86 vs ARM 0.99
x86 vs MIPS 0.98

ARM vs MIPS 0.98
32-bit vs 64-bit (Bits) 0.99
Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90
O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99
Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00
vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98
vs Control Flow Flattening 0.98
vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Examples of Findings

55

Architecture has a small impact

x86 vs ARM 0.99
x86 vs MIPS 0.98

ARM vs MIPS 0.98
32-bit vs 64-bit (Bits) 0.99
Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90
O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99
Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00
vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98
vs Control Flow Flattening 0.98
vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Examples of Findings

55

Architecture has a small impact

x86 vs ARM 0.99
x86 vs MIPS 0.98

ARM vs MIPS 0.98
32-bit vs 64-bit (Bits) 0.99
Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90
O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99
Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00
vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98
vs Control Flow Flattening 0.98
vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Pre-semantic Features Are Effective!
❖ VulSeeker (ASE’18)

– State of the art using numeric features
– Use both pre-semantic and semantic features with deep neural network

❖ vs VulSeeker

56

Dataset Packages Arch Compilers VulSeeker Ours

ASE1 2 3 1 0.99 0.9661
ASE2 5 3 1 - 0.9610
ASE3 5 6 2 0.8849 0.9616
ASE4 5 8 9 - 0.9450

Larger
Dataset

ROC AUC

Case Study: Heartbleed
❖ Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

❖ Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

❖ Average the similarity score rank in each option

57 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Case Study: Heartbleed
❖ Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

❖ Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

❖ Average the similarity score rank in each option

57 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Case Study: Heartbleed
❖ Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

❖ Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

❖ Average the similarity score rank in each option

57 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Case Study: Heartbleed
❖ Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

❖ Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

❖ Average the similarity score rank in each option

57 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Pre-semantic features with
a simple/interpretable model is effective!

Our Approach
❖ Fundamental problems of existing BCSA studies

– No available dataset ➔ Establish a baseline benchmark (BinKit)
– Heavy use of machine learning ➔ Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features ➔ Investigate pre-semantic features
➔ Proper feature engineering is important
➔ Simple model with presemantic features can show promising performance

❖ Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries ➔ Establish ground truth dataset (FirmKit)
– No available tool & Not enough studies ➔ Empirically analyze firmware images

58

Our Approach
❖ Fundamental problems of existing BCSA studies

– No available dataset ➔ Establish a baseline benchmark (BinKit)
– Heavy use of machine learning ➔ Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features ➔ Investigate pre-semantic features
➔ Proper feature engineering is important
➔ Simple model with presemantic features can show promising performance

❖ Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries ➔ Establish ground truth dataset (FirmKit)
– No available tool & Not enough studies ➔ Empirically analyze firmware images

58

Building Ground Truth Dataset
❖ Vulnerabilities from FirmAE

– 1,124 firmware images of IoT routers and cameras

❖ Target dataset
– 1,124 firmware images — 52,086,995 functions
– 267 vulnerable functions

▪ 98 command injection
▪ 162 information leak
▪ 7 buffer overflow
➔ 19 unique vulnerabilities

59

➔ Manually marked vulnerable function addresses

Analyzing Linux-based IoT Devices
❖ Randomly select one sample for each unique vulnerability
❖ Query it for each firmware image (1,124 images, 52M funcs)

60

Top-k # of Total Vulns Percent

1 141 / 267 52.81%
5 167 / 267 62.55%

10 182 / 267 68.16%
50 196 / 267 73.41%

100 196 / 267 73.41%

Original TikNib

Analyzing Linux-based IoT Devices
❖ Randomly select one sample for each unique vulnerability
❖ Query it for each firmware image (1,124 images, 52M funcs)

60

Top-k # of Total Vulns Percent

1 141 / 267 52.81%
5 167 / 267 62.55%

10 182 / 267 68.16%
50 196 / 267 73.41%

100 196 / 267 73.41%

Original TikNib

How to increase the performance?

Failure Case Study - CVE-2015-2051
❖ Architecture specific issues

– ARM -> ARM: detected at Rank 1.75 on average
– ARM -> MIPS: detected at Rank over 1000

❖ Arm produces a wrapper function for a library function call (.PLT)
➔ # of callees, # of imported callees, cfg_size, ...

61

ARM (Wrapper Function Call) MIPS (External Function Call)

Failure Case Study - CVE-2017-5521

62

Different version has an
additional check routine

No such routine exists

Failure Case Study - CVE-2017-5521

62

Different version has an
additional check routine

Need features robust against
different architectures and versions

No such routine exists

Leverage Heuristic Features
❖ IoT binaries often contain function names

– Use caller and callee names (i.e., internal and library function names)

❖ Data strings often contain useful information
– CGI binaries parse URLs with hard-coded strings

▪ “HTTP”, “POST”, “answer1”, “password”, ...
– Use words in a string

❖ Compare each word with Jaccard index
– The score is merged with TikNib

63

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

Final Results of Linux-based IoT Devices
❖ Randomly select one sample for each unique vulnerability
❖ Query it for each firmware image (1,124 images, 52M funcs)

64

Top-k # of Total Vulns Percent

1 141 / 267 52.81%
5 167 / 267 62.55%

10 182 / 267 68.16%
50 196 / 267 73.41%

100 196 / 267 73.41%

of Total Vulns Percent

263 / 267 98.50%
263 / 267 98.50%
266 / 267 99.63%
266 / 267 99.63%
267 / 267 100%

Original TikNib TikNib (+Heuristic Features)

65

Vulnerable

Patched

Not Related

Sorted by similarity score

Case Study of CVE-2016-6277
❖ Command injection in CGI parsing (NETGEAR)

❖ Simple patch based on a block list

❖ BCSA can distinguish vulnerabilities from the patched ones

66

Range # of Samples Is Vulnerable? Vendor Arch

0.95 ~ 1.00 29 (3 Ground Truths) Vulnerable Netgear ARM
0.5 ~ 0.95 40 Patched Netgear ARM

Case Study of CVE-2017-7240
❖ Directory traversal in CGI parsing
❖ DD-WRT’s httpd

– Designed to accept only allowed file types
– Customized images allow all file types

❖ The vulnerability resides in the data section, but BCSA found it
➔ BCSA can detect diversities in compile environments

67

Range # of Samples Is Vulnerable? Vendors

0.95 ~ 1.00 3 (3 Ground Truths) Vulnerable Belkin
0.54 ~ 0.83 6 Not Vulnerable Belkin
0.50 ~ 0.53 23 Not Vulnerable Asus, ZyXEL, linksys

*DD-WRT: Open source IoT firmware

Case Study of CVE-2018-10106
❖ Permission bypass with a newline (AUTHORIZED_GROUP)

❖ Same vulnerability appears in new versions (D-Link)
– CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376

❖ Same vulnerability appears in different vendors (TRENDnet, with score: 1.0)
– CVE-2018-7034

❖ Same vulnerability appears in different architectures (MIPS, MIPSEB, ARM)
– MIPS: 0.65~1, ARM: 0.5~0.6

68

Range # of Samples Is Vulnerable? Vendor

0.99 ~ 1.00 45 (42 Ground Truths) Vulnerable D-Link, TRENDnet

0.48 ~ 0.86
42 (41 Ground Truths) Vulnerable D-Link

5 Patched D-Link

Case Study of CVE-2014-2962
❖ Directory traversal in parsing a “getpage” parameter in CGI

❖ Similar/same vulnerability has existed from 2006 in multiple vendors
– CVE-2006-2337 D-Link
– CVE-2006-5607 Inca
– CVE-2006-5536 D-Link
– CVE-2014-2962 Belkin
– CVE-2015-7250 Zte
– CVE-2017-15647 Fiberhome
– CVE-2017-8770 Twsz

69

Range # of Samples Is Vulnerable? Vender

0.96 ~ 1.00 2 (2 Ground Truths) Vulnerable Belkin

0.66 ~ 0.86 13 Potentially
Vulnerable

Belkin, TRENDnet,
Netgear

0.53 1 Patched Netgear

Case Study of OpenSSL Vulnerabilities
❖ Vulnerable functions are ranked higher than patched functions
– Queried OpenSSL v1.0.1f

70

CVE-2015-1791 (309 of 455 are vulns) CVE-2014-0160 (34 of 222 are vulns)

Case Study of OpenSSL Vulnerabilities
❖ Vulnerable functions are ranked higher than patched functions
– Queried OpenSSL v1.0.1f

70

Old versions (0.9.8k, 0.9.8zc)
Static binary (/bin/curl)

CVE-2015-1791 (309 of 455 are vulns) CVE-2014-0160 (34 of 222 are vulns)

Comparison Results of CVE-2015-1791
❖ Top-k results of all functions in all firmware images (*NOT* each image)
❖ Gemini and VulSeeker utilized 4643 firmware images (unavailable)
❖ TikNib utilized 1,124 firmware images (FirmAE)

71

Gemini VulSeeker

Top-k # of
Funcs % # of

Funcs %

1 1 100% 1 100%
5 2 40% 3 60%

10 4 40% 6 60%
50 36 72% 41 82%

100 75 75% 83 83%

TikNib
(O0-O3)

TikNib
(O2-O3)

TikNib
(+Heuristics)

of
Funcs % # of

Funcs % # of
Funcs %

1 100% 1 100% 1 100%
5 100% 5 100% 5 100%
9 90% 10 100% 10 100%

19 38% 46 92% 50 100%
50 50% 82 82% 100 100%

Comparison Results of CVE-2015-1791
❖ Top-k results of all functions in all firmware images (*NOT* each image)
❖ Gemini and VulSeeker utilized 4643 firmware images (unavailable)
❖ TikNib utilized 1,124 firmware images (FirmAE)

71

Gemini VulSeeker

Top-k # of
Funcs % # of

Funcs %

1 1 100% 1 100%
5 2 40% 3 60%

10 4 40% 6 60%
50 36 72% 41 82%

100 75 75% 83 83%

TikNib
(O0-O3)

TikNib
(O2-O3)

TikNib
(+Heuristics)

of
Funcs % # of

Funcs % # of
Funcs %

1 100% 1 100% 1 100%
5 100% 5 100% 5 100%
9 90% 10 100% 10 100%

19 38% 46 92% 50 100%
50 50% 82 82% 100 100%

Firmware images are highly likely compiled with O2-O3

Limitation and Future Works
❖ Developing other effective features

– Type recovery (NDSS’11, SIGPLAN’13, SEC’17, CCS’18, …)
▪ Type-related features are effective
▪ # of arguments, each argument type, function return type
▪ All benchmark tests achieved ROC AUC close to 1.0

– Inter-procedural analysis
▪ Optimization affects function in-lining

– Inter-binary analysis
▪ Handle static binaries

❖ Determining whether a detected function is indeed vulnerable
– Function-level: e.g., leverage symbolic execution
– Binary-level: e.g., emulate a target binary and check dynamically
– Firmware-level: e.g., analyze vulnerabilities spread over multiple binaries
➔ Leave as future work

72

What Is Patch Gap?

Timeline

Vuln. Report Patch DeployDevelop a PatchAnalyze the Vuln

What Is Patch Gap?

Timeline

Vuln. Report

Public Disclosure

Patch DeployDevelop a PatchAnalyze the Vuln

What Is Patch Gap?

Timeline

Patch Gap

Vuln. Report

Public Disclosure

Patch DeployDevelop a PatchAnalyze the Vuln

Are Patch Gap Issues that Critical?

• Log4Shell (CVE-2021-44228)

• Discovered in Dec. 2021

• Oct. 2022: 72% of Organizations are still vulnerable (by Tenable)

• Citrix Application Delivery Controller and Gateway (CVE-2022-27510, CVE-2022-27518)

• Discovered in Nov. 2022, respectively

• Dec. 2022: 42% of Servers are actively exploited (by NSA)

• Arm Mali GPU driver (CVE-2022-22706)

• Reported in Jun. 2022

• Sep. 2022: Not patched at all (by Google Project Zero)

Difficulties in Addressing Patch Gap

• Too complex software
• Complex codebase (> 10M LoC, …)
• Huge dependency of 3rd party libraries
• …

• Too complex patch ecosystem
• Example: patching a vulnerability in Galaxy S10?

Difficulties in Addressing Patch Gap

• Too complex software
• Complex codebase (> 10M LoC, …)
• Huge dependency of 3rd party libraries
• …

• Too complex patch ecosystem
• Example: patching a vulnerability in Galaxy S10?
• > 1 billion users
• > 280 carriers to update
• > 30 device models
• Takes > 6 months to deploy a patch (See BaseSpec, NDSS’21)

Difficulties in Addressing Patch Gap

• Citrix ADC/Gateway?

Behind Stories - IoT Routers Vuln Reporting

• D-Link

• All vulnerabilities are patched by the vender

• ASUS

• Reported on Apr 2019

• Confirmed on Jan. 2020 (> 8 months)

• Belkin

• Reported on 2019

• No update until now (as of Oct. 2023)

Effort to Mitigate Patch Gap Issues

• Consider security from the design stage of software/system

• Apply source code analysis techniques (white-box)

• Version check, simple pattern match, …

• IDE-integrated plugins

• …

• Fast patch deployment

• Version/Model management

• …

• Shift-left (DevSecOps)

Real Difficulties … (Academia vs Industry)

• What if you are a company owner,

• Limited resource

• how many workers

• how much time

• …

• Can you assess the risk of a security issue?

• Probability?

• Potential Impact?

• How much loss?

Thank You!
dkay@kaist.ac.kr

BACKUP SLIDES

83

Decompilation?

84

Variable Recovery

Type Inference

Type Features Should Be Studied
❖ Function type does not change unless source code varies

– # of arguments
– Leverage Jaccard index for checking argument type, return type

❖ All benchmark tests achieved ROC AUC over 0.99

❖ vs VulSeeker

➔ Features from type information is effective
 (NDSS’11, SIGPLAN’13, SEC’17, CCS’18, …)

85

Dataset Packages Arch Compilers VulSeeker Ours Ours (Type)

ASE1 2 3 1 0.99 0.9727 0.9924
ASE2 5 3 1 - 0.9764 0.9931
ASE3 5 6 2 0.8849 0.9782 0.9939
ASE4 5 8 9 - 0.9584 0.9841

Larger
Dataset

ROC AUC

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

Failure Case Analysis
❖ Errors in IDA Pro (72% use IDA Pro)

– Cannot handle some registers in GCC and Clang
▪ GCC: ‘gp’, Clang: ‘s0’, ‘v0’

– incomplete CFGs
▪ switch table, data in code section

❖ Diversity of compiler backends
– Conditional instructions for ARM

▪ GCC: MOVLE, MOVGT, Clang: MOV + JLE, MOV + JGT
– Instruction pointer loading

▪ GCC: call __x86.get_pc_thunk.bx, Clang: call $+5

❖ Architecture-specific macros
– mul_add in OpenSSL

86

➔ Need to consider these cases carefully!

Analyzing Open-Source Vulnerabilities
❖ Two well-known OpenSSL vulnerabilities

– CVE-2015-1791: ssl3_get_new_session_ticket
▪ Genius, Gemini, VulSeeker

– CVE-2014-0160: tls1_process_heartbeat
▪ Genius, Gemini, Multi-kMH, DiscovRE, SAFE

❖ Approach
– Compile OpenSSL v1.0.1f with combinations of compiler options
– Search all compiled functions in each firmware image
– Average the similarity score for each function in each firmware image

❖ Ground truth
– Match a function name and version string
– CVE-2015-1791: 309 of 455 are vulnerable
– CVE 2014-0160: 34 of 222 are vulnerable

87

Version strings in libssl.so

