

Paralyzing Drones via EMI Signal Injection on Sensory Communication Channels

Joonha Jang*, Mangi Cho*, Jaehoon Kim, Dongkwan Kim, and Yongdae Kim

Syssec@KAIST

Drone

Ę

Drone Neutralization Technologies

Туре	Technology	Strength	Weakness	Response Time
Physical	Machine Gun,	Cost	Accuracy, Collateral damage	≈0
	Net, Colliding Drone	Cost	Accuracy, Reload	<10 sec
	Sound	Swarm attack	Distance, Power, Bypass, Aiming	<10 sec
	High-power laser	Accuracy, Distance	Response time, Cost, Swarm	>10 sec
Electro- magnetic	RF jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	GNSS jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	High-power EM	Swarm, Distance	Cost, Collateral damage	≈0
	Targeted EM	Power, Swarm, Distance	Cost	≈0
Hijacking	GNSS spoofing	Hijacking, Distance	Collateral damage, Response time	<10 sec
	Software hijacking	Cost	Need vulnerability	

Previous Work: Rocking Drone [Usenix'15]

Туре	Technology	Strength	Weakness	Response Time
Physical	Machine Gun,	Cost	Accuracy, Collateral damage	≈0
	Net, Colliding Drone	Cost	Accuracy, Reload	<10 sec
	Sound	Swarm attack	Distance, Power, Bypass, Aiming	<10 sec
	High-power laser	Accuracy, Distance	Response time, Cost, Swarm	>10 sec
Electro- magnetic	RF jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	GNSS jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	High-power EM	Swarm, Distance	Cost, Collateral damage	≈0
	Targeted EM	Power, Swarm, Distance	Cost	≈0
Hijacking	GNSS spoofing	Hijacking, Distance	Collateral damage, Response time	<10 sec
	Software hijacking	Cost	Need vulnerability	

How Drone Control Works

Control Unit

How Rocking Drone Control Works

Control Unit

Rocking Drone Attack Results

Rotor control data samples

Raw data samples of the gyroscope

Paralyzing Drones with EMI Attack

Туре	Technology	Strength	Weakness	Response Time
Physical	Machine Gun,	Cost	Accuracy, Collateral damage	≈0
	Net, Colliding Drone	Cost	Accuracy, Reload	<10 sec
	Sound	Swarm attack	Distance, Power, Bypass, Aiming	<10 sec
	High-power laser	Accuracy, Distance	Response time, Cost, Swarm	>10 sec
Electro- magnetic	RF jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	GNSS jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	High-power EM	Swarm, Distance	Cost, Collateral damage	≈0
	Targeted EM	Power, Swarm, Distance	Cost	≈0
Hijacking	GNSS spoofing	Hijacking, Distance	Collateral damage, Response time	<10 sec
	Software hijacking	Cost	Need vulnerability	

Rocking Drone: Control System Perspective

Control Unit

Paralyzing Drone: Control System Perspective

Control Unit

Q1. Distorting Communication Channel?

Ę

Q2. Remote disturbance possible?

Q3. Remote injection possible for drone?

EM injection experiment On hovering Drone

Q4. Attack Frequency?

KAIST

Q4. Attack Frequency?

Targeted EMI injection Experiment

Q5. Response time?

F

Q6. Countermeasure?

Shielding Evaluation IMU & Wire

Q6. Countermeasure?

- Existing Circuit level Detect and Mitigation
 - Time Offset Approach
 - Dummy Circuits Apporach
- Detection & Recovery
 - Detect the impact of EMI
 - Recover or Replace the impact of EMI
- Shielding [Most Effective]
 - Block the injection rather than the impact of EMI

Conclusion

- Advantages of Paralyzing Drones
 - The attack frequency is determined by the main board \rightarrow Swarming
 - Very narrow frequency → lesser collateral damage, lesser power
 - Within a single sampling time \rightarrow no time for detect and recovery
- Future work (commercialize)
 - Analysis of countermeasures
 - Analysis with more drones
 - Analysis for more efficient and effective EMI injection

Thank you!

Joonha Jang (cyber040946@kaist.ac.kr) Mangi Cho (mgcho0608@kaist.ac.kr)

https://sites.google.com/view/paralyzing-drones-via-emi

How is this Working

- 1. Back door EMI coupling(Radiative) on Control unit
- 2. Signal distortion in the digital signal of the communication channels between the IMU and control unit.

POE (Point of Entry)

F

POE (Point of Entry)

Ę

Experiment Setup

