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초록

수많은 IoT기기의보안성향상을위해대규모취약점분석기술은필수적이다. 하지만 IoT기기는그하드웨

어와 실제 구현 및 실행환경이 매우 다양하고, 개발 표준이 없이 폐쇄적으로 개발되며 세부 정보가 공개되지

않아,확장성있는분석기술을개발하기가쉽지않다. 대규모분석을위해실제기기없이기기펌웨어를분석

하는 연구가 다수 존재해왔으나, 간단한 소수의 기기만을 대상으로 삼거나 분석 성공률 또한 미비하였다. 본

연구는확장성있는 IoT기기취약점분석기술을제시한다. 이를위해다양한기기의펌웨어를직접분석하여

펌웨어 에뮬레이션 및 펌웨어 구조 분석을 위한 휴리스틱을 개발한다. 그 결과 많은 기기들이 유사한 코드를

공유한다는점을발견하였으며,개발된휴리스틱을활용해 95개의최신무선공유기와 IP카메라로부터 23개의

0-day와주요스마트폰베이스밴드로부터 3개의 0-day를발견하였다. 또한기기의코드유사도를바탕으로더

욱확장성있는취약점분석기술을제시한다. 현재대규모분석을수행할수있는바이너리코드유사도분석

시스템은존재하지않기때문에,우선현존하는유사도분석기술을체계화하고이를바탕으로대규모유사도

분석시스템을구축한다. 이를활용하여앞서분석한펌웨어들에서 442개의취약점을발견하였다. 마지막으로

본연구에서사용한데이터와코드를공개하여 IoT생태계보안성향상에기여한다.

핵심낱말 IoT보안, IoT취약점분석, IoT,취약점분석,바이너리코드유사도, IoT기기분석,임베디드기기

Abstract
To secure numerous Internet of Things (IoT) devices globally, conducting a large-scale vulnerability analysis is

essential. However, developing a scalable analysis approach that is applicable to various devices is not straight-

forward because 1) IoT devices have a wide variety of hardware configurations, implementations, and execution

environments, and 2) their vendors often withhold information about their products. To address the scalability issue,

several studies have attempted to analyze device firmware rather than physical devices. However, these approaches

are currently limited to a few simple/small devices, resulting in low analysis success rates.

In this thesis, we present a practical approach towards scalable vulnerability analysis of IoT devices. We began

by conducting an empirical analysis of various IoT devices and discovered that many of them share a common

codebase. We leveraged this similarity to develop several heuristics that enable successful firmware emulation and

firmware structure analysis, which are essential for vulnerability analysis. Using these heuristics, we discovered 23

0-day vulnerabilities in wireless routers and IP cameras, as well as three 0-days in smartphone baseband devices.

Following that, we present another approach that extends the vulnerability analysis by utilizing binary code

similarity analysis (BCSA). There have been several BCSA approaches, but none are easily applicable because they

often 1) do not share their source code or datasets and 2) employ uninterpretable machine learning techniques that

make the results difficult to comprehend. To address this, we first conducted a comprehensive study of existing

BCSA techniques, which revealed several insights. For instance, a simple model with a few basic features can

achieve results comparable to those obtained using deep learning techniques. Based on the findings, we developed

a BCSA framework and two heuristic features. We demonstrated our system’s effectiveness by analyzing over 53M

functions in 1,142 IoT firmware images and successfully identifying 442 vulnerabilities. We make our source code

and datasets publicly available to encourage further research.

Keywords IoT Security, IoT Vulnerability Analysis, IoT, Vulnerability Analysis, Binary Code Similarity, IoT

Analysis, Embedded Device
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Chapter 1. Introduction

1.1 Motivation

We are surrounded by billions of Internet of Things (IoT) devices, from smart speakers to internet-connected

power outlets and light bulbs. Not only simple and small devices are rapidly deployed worldwide, but an increasing

number of complex devices, such as smartphones, self-driving cars, and unmanned aerial vehicles. Because IoT

devices are always connected to the Internet, security flaws in these devices are critical for the entire Internet [1, 2].

Recent distributed denial of service (DDoS) attacks, which originate from a massive number of those devices,

have demonstrated that such attacks are a real and serious threat. These attacks can generate unprecedented

traffic volumes greater than 1 Tbps, which can temporarily shut down critical Internet services such as DynDNS

(in 2016) [3] or GitHub (in 2018) [4]. Additionally, numerous backdoors have been discovered on a variety of

devices [5, 6], and malware, such as Mirai and Satori, has infected millions of such devices [7, 8, 9, 10].

Scaling up vulnerability analysis is critical for eradicating such threats not only in widespread devices but

also in convoluted IoT ecosystems comprised of numerous manufacturers, devices, and applications. Due to

the impossibility of physically obtaining numerous devices, existing studies have attempted to analyze device

firmware using advanced security analysis techniques, such as symbolic execution [11, 12], fuzzing [13, 14, 15], or

automated pentesting [16, 17, 18, 19, 20].

However, conducting vulnerability analysis on a large number of IoT devices remains challenging due to the

opacity (i.e., obscurity) and diversity underlying the IoT ecosystem. Each IoT device is accompanied by a specific

set of peripheral hardware devices from a variety of manufacturers. As a result, IoT devices have a wide range

of hardware configurations and software implementation practices. Additionally, vendors frequently withhold

information about their devices, obstructing in-depth analysis of them.

In order to conduct scalable vulnerability analysis, several studies have attempted to address the complexity and

opacity of the IoT ecosystem. They are, however, still limited to a few simple devices. For instance, Firmadyne [17],

the leading firmware emulation framework, could emulate only 183 of 1,124 (16.3%) firmware images in wireless

routers and IP cameras that we collected from the top eight vendors.

What could account for such a low success rate despite the fact that many studies have been conducted?

Throughout our literature review of IoT vulnerability analysis, we noticed a prominent research trend in this field:

many studies place a higher value on the novelty and freshness while ignoring engineering effort and hands-on

analysis when developing analysis approaches. More precisely, they disregard the value of empirical analysis of

various device types. Additionally, they avoid developing heuristic workarounds that could have solved analysis

problems because they appear to be neither scientific nor novel, but rather simple and trivial. In this regard, we

hypothesize that the immaturity (i.e., low success rate) of existing IoT vulnerability analysis approaches may be a

result of a trend away from manual analysis and away from the development of heuristic workarounds.

1.2 Research Direction and Contribution

We argue in this thesis that well-systematized heuristic workarounds can address the opacity and diversity

issues inherent in IoT vulnerability analysis. Despite their diversity, we believe that many IoT devices, particularly

similar device versions or families, may share similar implementations. Thus, a small amount of additional

engineering effort and hands-on analysis can address the issues in vulnerability analysis and significantly increase
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the success rate of the analysis. Additionally, we could leverage the similarity of IoT devices; if we develop

heuristics that meet the requirements of vulnerability analysis, the heuristics developed can be applied to other

devices, enabling large-scale analysis. Therefore, we explore the following hypothesis in the paper:

”While heuristics may appear trivial and not technically novel, developing and systematizing ’dirty’ heuristics is

critical, and it is the last-mile effort required to enable large-scale vulnerability analysis on the IoT ecosystem.”

To test this hypothesis, we looked at two different device categories, namely Linux-based IoT devices and

smartphone baseband chipsets. Linux-based IoT devices have a relatively straightforward functionality and a

well-known firmware structure. On the other hand, smartphone baseband chipsets incorporate sophisticated

functionalities such as real-time signal/protocol processing, and their firmware structure is largely unknown. We

will discuss these characteristics more in detail in §2.2. We collected 1,124 firmware images from the top eight

wireless router and IP camera vendors for the former category. For the latter, we gathered 18 firmware images from

one of the top three smartphone baseband manufacturers.

By analyzing the collected firmware images empirically, we discovered that similar types of devices, par-

ticularly similar device versions or models, in practice share a common codebase. Based on this observation,

we explore our hypothesis for three fundamental steps in IoT vulnerability analysis: (1) firmware emulation, (2)

firmware structure analysis, and (3) known vulnerability analysis. We conduct empirical investigations into failures

of each technique and develop heuristics to address them. Then, we 1) systematize the developed heuristics, 2)

integrate them as plugins into existing approaches, and 3) quantify the degree of performance improvement.

Notably, the systematized heuristics demonstrated significant gains. To begin, they increased the success

rate of the leading firmware emulation framework from 183 (16.3%) to 892 (79.4%). This enabled us to discover

306 (≈23 times) more vulnerabilities than the state of the art through 1-day exploit testing, as well as 23 new

vulnerabilities affecting 95 of the latest devices through the use of a simple custom fuzzer. Second, the heuristics

discovered more than 200 times the number of function boundaries in smartphone baseband firmware than the

state-of-the-art binary analysis framework. Additionally, the heuristics identified our target functions responsible

for decoding baseband protocol messages, resulting in the discovery of 72 functional bugs and 56 memory-related

vulnerabilities.

By leveraging the similarity of IoT devices, developing and systematizing heuristics increased the scalability

of vulnerability analysis. More precisely, we were able to rapidly identify previously known vulnerabilities by

leveraging binary code similarity analysis (BCSA). Notably, there is no BCSA framework that is easily applicable

to large-scale IoT vulnerability analysis; thus, we set out to create the first BCSA framework for IoT vulnerability

analysis. To begin, we conducted a comprehensive study on existing BCSA approaches and gleaned a wealth of

information. For example, proper feature engineering on simple features and models can achieve promising results

that are comparable to those obtained using state-of-the-art approaches. Following that, we conducted an empirical

analysis of firmware images and developed two heuristic features. By systematizing this heuristic knowledge, we

developed a BCSA framework that detects vulnerability candidates in the firmware image for a given vulnerable

function. Using this system, we analyzed 53,492,954 functions from 1,142 firmware images and discovered 442

vulnerabilities, of which 189 were not discovered by previous studies.

Our study uncovered common issues in the recent research on IoT vulnerability analysis and underscored the

critical nature of conducting hands-on analysis and developing/systematizing heuristic workarounds. To foster

further research, we make our source code and datasets publicly available.

In summary, we make the following contributions:

• We conducted empirical research into firmware emulation failures and developed heuristics for successful

emulation. By systematizing the heuristics, we increased the success rate of the state-of-the-art firmware
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emulation framework from 183 (16.3%) to 892 (79.4%) for 1,124 firmware images of wireless routers and IP

cameras. This resulted in the discovery of 343 vulnerabilities including 23 0-day vulnerabilities.

• We conducted an empirical analysis of smartphone baseband firmware in order to decipher its structure. We

developed several heuristics for determining the boundaries of firmware functions. For 18 baseband firmware

images, the heuristics successfully identified over 200 times more functions than the state-of-the-art binary

analysis framework. Additionally, they identified message decoder functions, enabling us to discover a total of

72 functional bugs and 56 vulnerabilities, including critical 0-day vulnerabilities.

• We extracted useful insights and effective features for BCSA through a systematic study of BCSA and empirical

analysis of IoT firmware images. Based on this heuristic knowledge, we developed the first BCSA system

that is easily applicable to large-scale IoT vulnerability analysis. The system analyzed 53,492,954 functions

contained in 1,148 firmware images and discovered 442 vulnerabilities.

• We emphasize the critical nature of performing hands-on analysis and developing/systematizing heuristic

workarounds. To encourage further research, we make our source code and datasets publicly available.

1.3 Thesis Structure

The remainder of the thesis is organized around our previous publications [21, 22, 23, 24]. Chapter 2 provides

context for the IoT vulnerability analysis procedure and introduces our target devices. In Chapter 3, we describe our

heuristic approach for successfully emulating the firmware of Linux-based IoT devices, such as wireless routers and

IP cameras. Chapter 4 describes our heuristics for analyzing the firmware structure of major smartphone baseband

devices. Following that, Chapter 5 systematizes existing BCSA techniques and our insights. In Chapter 6, we

describe how we use BCSA to scale up vulnerability analysis. Finally, we conclude the thesis in Chapter 7.
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Chapter 2. Background

IoT devices frequently communicate with the cloud or a mobile phone via the Internet in order to maintain

control of the device or to allow the user to control the device. These IoT devices are frequently purpose-built;

examples include wireless routers, IP cameras, and smart speakers. IoT devices are composed of specialized

hardware peripherals and software to accomplish their intended functions. Such hardware is managed by firmware,

which consists of a customized bootloader, operating system kernel, and filesystem, as well as programs to perform

required tasks. Alternatively to multiple files, firmware can run as a single executable, enabling close collaboration

between multiple functionalities, such as a real-time operating system. To conserve power and resources, IoT

device firmware is frequently based on RISC architectures, such as ARM, MIPS, or PowerPC, rather than CISC

architectures, such as x86 or x86-64. In summary, because IoT devices are specialized embedded computer systems,

their vulnerability analysis methodologies differ slightly from those used for general desktop/server computer

programs. The remainder of this chapter describes the typical IoT vulnerability analysis procedures and target

device categories on which this thesis focuses.

2.1 IoT Vulnerability Analysis Procedure

Figure 2.1 is a representative illustration of a typical IoT vulnerability analysis procedure. This analysis

procedure varies according to the methodologies used; in this case, we followed a recent trend in IoT vulnerability

analysis. Because physically obtaining numerous devices is infeasible, researchers have attempted to analyze device

firmware rather than actual devices. They create a virtual environment that resembles a real device and emulate

firmware images in order to apply dynamic analysis techniques (see Figure 2.1 for the yellow parts). On the other

hand, some firmware images may be impossible to emulate due to their unknown structure or their interaction with

a large number of peripherals. Researchers analyze the structure of these firmware images first and then apply static

analysis techniques to them (the red parts in Figure 2.1). Both approaches can also be used in conjunction with one

another, which is referred to as a hybrid approach. If a vulnerability is discovered on one device, it may also exist

on other devices. To quickly identify such vulnerabilities, one can extract distinct patterns from the discovered

vulnerability and then search for those patterns in other firmware images, which we refer to as known vulnerability

analysis. In the following, we will detail each step of the IoT vulnerability analysis procedure.

2.1.1 Acquiring Firmware Images

A firmware image can be obtained directly from a device; for example, one can dump a firmware image from

a device’s flash memory. However, this approach necessitates the use of a proprietary interface accessible only to

manufacturers, such as a debug interface. Typically, such an interface is not made available to regular users in order

to prevent unintentional firmware access. Rather than that, firmware images can be obtained from manufacturers’

websites via a firmware update routine, or from third-party servers that archive previously released firmware images.

To easily collect firmware images from these websites and servers, researchers frequently use automated scraping

tools, such as Scrapy [25].

Firmware images are typically compressed, and thus must be unpacked prior to further analysis. A firmware

image typically contains a bootloader, kernel, and filesystem, containing the device’s applications. To compress the

firmware image’s internal contents, various compression algorithms, such as LZMA, ZIP, or Gzip, are frequently
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Figure 2.1: A typical example of an IoT vulnerability analysis procedure. The colored logic indicates our focus.

(yellow: firmware emulation, red: firmware structure analysis, blue: known vulnerability analysis

used. To unpack firmware images, tools, such as Binwalk [26] or Firmware-Mod-Kit [27], can be used. These tools

scan a given image for pre-defined signatures for a variety of file types. If they find a signature match, they extract

the matching file from the image and continue scanning until all files in the image are collected. Additionally, there

are encrypted or customized images that cannot be used with signature matching, and they are beyond the scope of

this thesis.

2.1.2 Emulating Device Firmware and Conducting Dynamic Analysis

Once the files have been extracted from the firmware image, they can be analyzed statically or dynamically.

Due to the absence of runtime information, static analysis often produces many false positives. In contrast, dynamic

analysis directly executes target programs, resulting in fewer false positives. Therefore, dynamic analysis has been

frequently used in IoT vulnerability analysis [28, 29, 30, 31, 32, 33, 15, 34, 35, 36].

To conduct dynamic security analysis, one must either possess a physical device or create an emulation

environment in which the firmware can be run and controlled. Because the latter approach does not require any

physical devices, it enables large-scale dynamic analysis, preferably using elastic cloud services. Therefore, recent

studies [16, 17, 14, 13, 15, 18, 19, 20] have concentrated on the latter approach, which emulates device firmware

and dynamically evaluates its security. The system that performs firmware emulation is denoted as the host system,

and the emulated system (i.e., the running firmware) is referred to as the guest system.

5



Typically, there are two levels of emulation: user-level and system-level. User-level emulation emulates only

the target program in the firmware, making optimal use of the host system. An example would be emulating a web

interface. A web interface is a representative service used in IoT devices to administer or maintain the device. It

serves a variety of static content types, such as HTML, as well as dynamic contents generated by CGI programs.

While static contents can be served with the host environment, dynamic contents may not. This is because they may

cause a conflict with the host system because they rely on custom libraries and device drivers that are not included

in the host system. On the other hand, system-level emulation completely emulates the guest system, including the

kernel. Because it provides an isolated execution environment, it can also emulate various kernel and device driver

features. Nonetheless, firmware emulation is extremely difficult, as vendor-specific hardware issues or peripherals

that are memory-mapped must be considered. Without properly handling them, programs running on the emulated

firmware would crash.

Several studies [16, 17, 14, 13, 15, 18, 19, 20] have attempted to overcome these obstacles by developing

an emulation environment that is physically similar to that of physical devices. QEMU [37] is a widely used

emulator that supports various processor/hardware types and peripherals. Costin et al. [16] presented a framework

for scalable dynamic analysis, as well as several case studies involving various embedded web interfaces. Chen et

al. [17] introduced Firmadyne, the first large-scale firmware emulation framework. Notably, Firmadyne emulates

non-volatile random access memory (NVRAM), which is used to store various configuration values for programs

running in the emulated firmware. Gustafson et al. [18] modeled memory-mapped I/O (MMIO) operations in

peripheral communication. Feng et al. [19] adopted machine learning to resolve this MMIO issue; their model

returns predicted values for MMIO access. Clements et al. [38] recently proposed using a hardware abstraction layer

to decouple the hardware from the firmware. While these approaches are encouraging, they are still insufficient to

cover the vast majority of IoT devices in practice. We will more discuss their limitations and how we overcame

challenges in firmware emulation in Chapter 3.

Meanwhile, it is worth noting that additional research [39, 40, 41, 42, 43] has been conducted on utilizing

physical devices to address emulation challenges. Zaddach et al. [41] and Marius et al. [42] proposed analyzing

only a subset of firmware code by relaying the execution of other code or peripheral access to a physical device.

They accomplished this by utilizing a debug interface known as JTAG. Similarly, Kammerstetter et al. [39, 40]

created a proxy environment that redirects access to a character device to a physical device. While these approaches

are advantageous, they require physical devices and thus do not scale well for IoT vulnerability analysis.

After successfully running all required firmware programs, dynamic analysis can be used to identify potential

vulnerabilities in a target device. The most frequently used techniques for this type of analysis are 1) advanced

fuzzing techniques, or 2) manual/automated pentesting based on previously known vulnerabilities. Existing

research that took the former approach [13, 14, 15] frequently made use of a well-known fuzzer, American fuzzy

lop (AFL) [44]. Notably, Zheng et al. [15] proposed an optimization technique for running a fuzzer effectively

in an emulated environment; their approach switches the context between system- and user-level emulation. By

contrast, studies that took the latter approach [17] frequently used well-known Proof-of-Concept (PoC) scripts or

automated pentesting tools, such as Metasploit [33] or RouterSploit [28].

2.1.3 Analyzing Firmware Structures and Conducting Static Analysis

To perform static or dynamic analysis, one must first understand the firmware’s structure. The firmware

structure of Linux-based IoT devices, such as wireless routers or IP cameras, is widely known. As a result, there are

many useful tools [26, 27, 45] that scan pre-defined signatures for various types of files in such devices. However,

many IoT devices (e.g., a smartphone baseband) have a unique firmware structure that is not yet publicly known.
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These devices often have a convoluted firmware structure and communicate with many peripherals. As a result,

emulating the firmware of such devices and performing dynamic analysis is exceedingly difficult.

To resolve this issue, one must manually analyze the firmware structure of the device and then conduct

appropriate analysis. To conduct a successful analysis of the firmware structure, one must first understand the

firmware’s file format, then analyze the memory layout into which the firmware is loaded, and finally, identify

function boundaries from a stream of byte codes in the firmware. Nonetheless, the majority of studies [46, 47, 48,

49, 50, 51] have concentrated on identifying function boundaries (i.e., the last step) without examining the other

two steps. Even so, these approaches are constrained to simple IoT devices or a few architectures (mostly x86, a

few ARM). We will more discuss the challenges inherent in firmware structure analysis and how we overcame

them in Chapter 4.

After revealing the firmware structures of IoT devices, static analysis is frequently used to identify potential

vulnerabilities [52, 12]. Costin et al. [52], for example, showed determined the vulnerability of devices by by

analyzing easily crackable passwords or backdoor strings. Using symbolic execution, Shoshitaishvili et al. [12]

discovered authentication bypass vulnerabilities. Due to the absence of runtime information, static analysis may

generate more false positives than dynamic analysis. However, static analysis has several advantages; for example,

because it does not directly execute instructions, it is largely immune to the emulation difficulties associated with

dynamic analysis. Additionally, it can be applied directly to the files contained within a firmware image. As a

result, static analysis is more scalable than dynamic analysis when it comes to vulnerability analysis.

2.1.4 Propagating Vulnerability Discovery with Known Vulnerability Analysis

Numerous IoT devices share similar vulnerabilities and are frequently exploited by them [7, 8, 9, 10]. This

could be a result of the trend toward software reuse and code sharing. To ease the device development process,

programmers often reuse existing code to create new software. Some even copy and paste code samples from the

Internet. This trend has significant implications for the security and privacy of software. When a programmer copies

a vulnerable function from another project, the vulnerability is retained even after the original project resolves it.

Regrettably, such issues are also prevalent in the IoT ecosystem.

However, detecting known vulnerabilities in binary code is not straightforward, especially when the source code

is not available. This is because binary code is devoid of high-level information, such as data types or function names.

For instance, it is not immediately apparent from binary code whether a memory cell represents an integer, a string,

or another data type. Furthermore, defining precise function boundaries is inherently difficult [46, 47, 48, 49, 50, 51].

As a result, researchers executed known PoC exploits or automated pentesting tools, such as Metasploit [33]

or RouterSploit [28] after emulating target device firmware images. This is advantageous because it avoids the

need for precise binary analysis. However, this approach may not be suitable for scalable security analysis, as it

still requires successful firmware emulation, as well as sufficient time for emulation and dynamic testing.

On the other hand, several studies have focused on exploiting binary code’s similarity [53, 54, 55, 56, 57, 58,

59, 60, 61, 62, 63, 64] in order to rapidly detect known vulnerabilities. Notably, BCSA has been a critical area of

research in a variety of fields, including malware detection [65, 66], plagiarism detection [67, 68], and authorship

identification [69]. Recent studies on IoT vulnerability analysis [70, 54, 71, 55, 60, 57, 56] have also attempted to

assess the security of numerous IoT devices using advanced BCSA techniques.

Nonetheless, applying BCSA techniques to IoT devices is not trivial due to the fact that existing studies 1) do

not share their source code or datasets and 2) use uninterpretable machine learning that complicate understanding

the results. In Chapter 5, we will more discuss these points and how we addressed them. In Chapter 6, we also

present a scalable BCSA system for IoT security testing, as well as the results of a large-scale analysis.
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2.2 Target Device Category

In this thesis, we analyze two distinct categories of IoT devices: 1) IoT devices powered by Linux, such

as wireless routers and IP cameras, and 2) smartphone baseband. Malware frequently targets Linux-based IoT

devices [7, 8, 9, 10] in order to launch DDoS attacks [3, 4]. On the other hand, the smartphone baseband is critical

to mobile communication; it is responsible for managing all packets exchanged between the smartphone and cellular

networks. Thus, their implementations may contain multiple critical vulnerabilities [72, 73, 74, 75, 76, 77, 78, 79,

80, 81, 82, 83].

Additionally, we chose these two device categories due to their distinctive characteristics, which are detailed

in Table 2.1. Active analysis of Linux-based IoT devices has resulted in widespread knowledge of their firmware

structure. On the other hand, the smartphone baseband’s firmware structure has not been revealed yet. We

investigate investigate the importance and effectiveness of heuristics by examining each device category. That is,

we 1) investigate firmware emulation issues using Linux-based IoT devices (in Chapter 3) and 2) leverage the

smartphone baseband to investigate issues with firmware structure analysis (in Chapter 4). Then, utilizing both

devices, we examine issues in known vulnerability analysis (in Chapter 6).

Table 2.1: Characteristics of our target devices.

Wireless Routers and IP Cameras Smartphone Baseband

Functionality Simple Complex (Real-Time)
Firmware Structure Well-Known Unknown
Operating System General Purpose OS (i.e., Linux) No OS Abstraction
# of Vendors Numerous A Few (Oligopoly)
# of Files in Firmware Multiple Files Monolithic
# of Peripherals A Few Multiple
Emulation Feasible Difficult
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Chapter 3. Towards Large-Scale Firmware Emulation

To assess the security of a large number of IoT devices, researchers have focused on large-scale firmware

analysis. Many existing studies [16, 17, 14, 13, 15, 18, 19, 20] have taken the approach of running device firmware

in an emulated environment that closely mimics the behavior of real hardware/peripherals and then performing

dynamic analysis on the running firmware. This approach enables not only dynamic firmware analysis without

the need for hardware, but also the use of cloud infrastructure to scale up the security analysis. Among others,

Firmadyne [17] is the current state-of-the-art firmware emulation framework that enables large-scale emulation of

IoT devices by providing a full-system emulation environment.

However, this approach is not foolproof in practice, as running firmware in a full-system emulation environ-

ment frequently fails due to the inconsistencies between the real and the virtual, emulated environments. Any

inconsistencies in the emulated environment can cause the running firmware to enter an unexpected state, resulting

in the failure of emulation and dynamic security analysis. Resolving this emulation discrepancy is difficult due

to the the wide variety of IoT device hardware and configurations. Each IoT device is equipped with a unique

set of hardware components from a variety of manufacturers. Additionally, firmware typically relies on config-

uration vectors, such as data in NVRAM, which an emulated environment may miss due to the data being only

available in hardware. Such complicated circumstances are incompatible with Firmadyne’s emulation environment.

QEMU [37], its emulator, only supports a few common devices and configurations. Without a concerted effort to

emulate each device, the issue will never be resolved.

To investigate the impact of this issue in practice, we collected 1,124 firmware images from the top eight

wireless router and IP camera vendors and ran them through Firmadyne. The result is alarming as Firmadyne

is only capable of emulating 183 of them (see Table 3.2), leaving the vast majority portion of firmware images

(83.72%) unanalyzed. Such a low success rate for emulation implies that, while Firmadyne is intended to be generic

by providing a full-system emulation environment for firmware, this approach may not be sufficient in practice,

necessitating additional manual efforts to resolve emulated environment inconsistencies.

Building a precise emulation environment may not be the only way to run firmware for dynamic security

analysis. To counter the hardware complexity inherent in the IoT ecosystem, we propose that well-systematized

heuristic workarounds could be a viable alternative approach for achieving a higher success rate of firmware

emulation in practice. By empirically analyzing Firmadyne’s failure cases, we noticed that simple changes in

device or software configurations could allow the firmware to continue to run without failures. By systematizing

such heuristic workarounds and incorporating them as plugins, the system we developed, FIRMAE [21], increased

the success rate of firmware emulation from 183 (16.3%) to 892 (79.4%). By running 1-day exploit testing, the

system discovered 306 (≈23 times) more vulnerabilities than Firmadyne due to the increased emulation success

rate. Additionally, it discovered 23 0-day vulnerabilities from 95 of the most latest devices using a simple fuzzer.

This chapter 1) discusses the novel possibilities of well-systematizing heuristic workarounds for enabling

large-scale firmware emulation in practice, and 2) summarizes how we discovered and systematized such heuristic

workarounds.

3.1 Preliminaries for Firmware Emulation

Figure 3.1 depicts a typical firmware emulation procedure for dynamic analysis. After unpacking a firmware

image, the emulation framework boots the guest system from the extracted filesystem, which includes a bootloader
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Figure 3.1: An example of typical firmware emulation procedure for dynamic analysis. The colored components

involve potential emulation issues.

and kernel. Following that, the guest system performs initialization and configuration tasks for its network

functionality. Finally, the guest system runs applications, such as web servers or CGI programs, that interact with

the libraries or device drivers in the emulated system.

3.1.1 Challenges in Firmware Emulation

The emulation-based analysis is advantageous to conduct dynamic security analysis on elastic cloud (in terms

of scalability). However, successfully emulating a variety of firmware images is exceedingly difficult due to the

discrepancy between the real and emulated environments. Resolving such inconsistencies is not straightforward

owing to the convoluted IoT ecosystem’s wide diversity of hardware configurations and software implementations,

which result from the absence of standardized software development practices. Libraries, device drivers, and even

kernels vary between vendors, resulting in emulation failure. Unless these issues are resolved properly, internal

programs may crash, rendering further emulation and dynamic analysis impossible.

As previously noted [18, 19], devices that access hardware interfaces, such as LED sensors or cameras, exhibit

greater diversity. Memory-mapped IO (MMIO) operations are frequently used in such devices to communicate

between the main device and its peripherals via pre-defined memory addresses. These addresses, however, vary

significantly between devices. Consequently, scaling this approach to multiple devices is challenging. Chen et

al. [17] attempted a large-scale emulation of one such piece of hardware, NVRAM. Muench et al. [84] emphasized

the device-specific difficulties associated with performing a dynamic analysis to identify memory corruption

vulnerabilities. However, such approaches are still too early to implement on a large scale.

Fully emulating a firmware image may not be feasible unless all functions are implemented exactly as they

are in physical devices. Nonetheless, our goal is not to perfectly emulate a firmware image, but rather to perform

dynamic analysis. Therefore, there may be opportunities to accomplish the goal, which we will discuss in greater

detail below.

3.1.2 Firmadyne (Automatic Emulation Framework) and Its Limitations

Existing research projects approach such emulation challenges as a hardware emulation problem, i.e., emulating

hardware and peripheral devices as precise as the real one. Among these approaches, Firmadyne [17] is the current

state-of-the-art framework (which has been superseded by FirmAE [21]) for large-scale analysis of Linux-based

IoT devices. Many subsequent studies [13, 14, 15] have used it to conduct dynamic analysis.

Firmadyne emulates hardware and peripheral devices by utilizing a pre-built customized Linux kernel and
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libraries. For precise emulation, it emulates a target firmware image twice after unpacking the image. In the first

emulation, its customized kernel with a driver intercepts major system calls and records useful information. Then,

the second uses the logged information to configure the guest system properly. For example, Firmadyne records

the name and IP address of the network interface that the emulated firmware accesses by hooking inet_ioctl()

and inet_bind() in the first emulation. Then, it configures the guest system with this information in the second

emulation. Firmadyne also makes use of pre-built custom libraries to emulate peripherals, particularly flash memory

called non-volatile RAM (NVRAM). For instance, a library called libnvram stores and retrieves NVRAM values

using hard-coded default values.

While Firmadyne’s precise hardware emulation appears promising, in reality, its emulation success rate is

considerably low. Among 1,124 IoT firmware images that we collected from the top eight vendors of wireless

routers and IP cameras, Firmadyne can emulate only 330 of 1,124 (29.4%) firmware images for networking

functionality. It has a much lower success rate when it comes to running applications (e.g., web servers) in the

firmware. More precisely, it is capable of emulating web applications for only 183 (16.3%) firmware images.

3.1.3 Motivating Example using Firmadyne

To understand how we can handle inconsistencies, we conducted a case study using Firmadyne on two

firmware images. To begin, we used Firmadyne to run the firmware for the D-Link DIR-505L in order to test

CVE-2014-3936 [85]. Because the vulnerability is a stack-based buffer overflow in a web service running on the

firmware, exploiting it requires sending HTTP requests via the network interface of the guest system. However,

when we used Firmadyne to run the firmware, we were not able to connect to the web service. Our analysis revealed

that the guest system’s network is not configured properly, preventing the exploitation even though the web server

is running normally. The root cause may be that a process responsible for network configuration was blocked due

to access to unsupported peripherals or unknown/incorrect values. We were able to test the vulnerability, however,

by forcibly configuring the network to its default setting. Second, we used Firmadyne to test the firmware of the

NETGEAR R6250 for CVE-2017-5521. In this case, the emulation failed during the booting procedure due to a

kernel panic. We were able to run the firmware and test the vulnerability without analyzing the root cause after

slightly modifying the booting and kernel-related configuration to match the virtual environment.

From these two examples, we observed that minor changes in configuration or device settings can enable

firmware emulation to run without addressing the root causes, i.e., emulation discrepancy problems. In this regard,

we believe that Firmadyne may have passed up many opportunities to emulate and analyze IoT firmware images,

despite the fact that its failure cases are easily handled.

3.2 Scaling up Firmware Emulation for Security Testing

Perfect hardware compatibility at the emulation layer may not be required for dynamic software security

testing, such as applying human pentesting and fuzzing. Rather than that, it may be sufficient to meet the bare

minimum requirements for properly running target applications in firmware. For example, with a wireless router,

we need to 1) boot the operating system of its firmware, 2) configure the network interfaces for communication,

and 3) run a web server that serves as the administrative interface of the router. Several factors may come into play

with completing these steps, some of which may be beyond the capabilities of general emulators such as QEMU.

These factors include the following: 1) the absence of correct values in NVRAM (e.g., boot parameters) or the

absence of devices (e.g., some hardware devices required for booting) necessary to satisfy boot conditions; 2) the

absence of network interfaces (e.g., different NIC interfaces) or connections (e.g., the absence of an internet or
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intranet connection) required to communicate with the applications in the emulated system; and 3) the absence of

conditions necessary to launch a web server (e.g., an IP address and a port).

Unlike previous approaches that sought to accurately emulate hardware behaviors, we take a different approach

based on this hypothesis. That is, rather than resolving all hardware emulation dependencies, we aim to build an

abstraction environment that meets the bare minimum requirements to run target applications for dynamic security

testing. Specifically, the following two properties illustrate our abstraction emulation goal for dynamic security

testing on IoT devices:

• Network accessibility: the network in the guest system must be accessible from the host system.

• Service availability: the target program in the guest system must be available for dynamic analysis.

Attaining these goals may not resolve fundamental emulation issues, such as reproducing 100% identical device

behaviors. However, we believe that developing heuristic workarounds for setting up the network functionality

and running applications can suffice for dynamic security testing, even if the emulated environment is not 100%

identical to the target device. Here, we emphasize that the key concept is to deal with high-level properties in order

to meet the requirements for running target applications in firmware, not to accurately emulate the underlying

hardware. As such heuristics deal with high-level properties rather than hardware issues, they can be transferred

across multiple devices and may mitigate failures caused by distinct root causes.

3.2.1 Wireless Routers as a IoT Firmware Case Study

We selected wireless routers as our analysis target for IoT firmware emulation on a large scale. This is because

1) wireless routers have typical characteristics of IoT devices, such as networking and web server functionality;

2) since their introduction in the early 2000s, their models and hardware/software configurations have become

extremely diverse; and 3) their firmware images are available for large-scale analysis (we could collect 1,079

images).

Additionally, wireless routers are critical components of IoT and home security because they serve as gateways

to the home network and manage other IoT devices via internal networking. Indeed, numerous botnets [8, 7]

specifically target them in order to launch DDoS attacks. To this end, we focus on emulating wireless routers in order

to test our hypothesis. We specifically focus on emulating their web services because these web services include the

administrative interfaces of devices that have been found to contain a variety of vulnerabilities [86, 16, 87, 8, 7].

3.3 Developing Heuristics from Emulation Failures

As a first step toward learning and systematizing heuristics for avoiding emulation failures, we investigate

firmware emulation failure cases using the state-of-the-art framework, Firmadyne [17]. We collected 1,079 firmware

images for wireless routers from the websites of the top eight vendors [88]. We emulated 526 old versions of images

using Firmadyne; it was only able to emulate 16.9% of the images. For the results, we classified the identified

failure cases by the place where the emulation failed (See Figure 3.1): boot (§3.3.1), network (§3.3.2), library

(§3.3.3), kernel (§3.3.4), and programs (§3.3.5). Through the analysis of failure cases, we were able to develop

several heuristics for dealing with and avoiding failures. Note that some of the heuristics have also been proposed

previously [17, 20]. Table 3.1 summarizes our systematized heuristics, which we detail in the following.

12



Table 3.1: Summary of heuristics for resolving emulation issues in order to run web services in wireless routers.

Where Emulation Problem Heuristics

1 Boot
Incorrect booting sequence Utilize the original kernel’s booting sequence
Missing files or directories Prepare files and directories prior to the emulation

2 Network
No support for IP aliasing and VLANs Correct routing rules and network interface settings
No network interface Forcibly set up the default network interface
Filtering rules in iptables Set the default policy to accept all incoming packets

3 Library
Unknown NVRAM values Search the filesystem for key-value pairs
Invalid return of NULL values Return a valid string pointer instead of NULL

4 Kernel
Insufficient support of kernel modules Emulate functions such as ioctl using a shared library
Incompatible kernel version Upgrade the kernel to v4.1 with a proper option

5 Programs
Inactive web servers Forcibly execute the web server
No support for extra commands Install full-featured busybox
Short timeout for emulation Increase the timeout to 240 s

3.3.1 Heuristics for Handling Boot Failures

The booting procedure involves the execution of several programs that initialize the system environment; thus,

it fails if the emulated environment is unable to execute any (or even a part) of the programs in the boot process.

Many boot failures have been observed to result in a kernel panic.

By analyzing these cases, we identified two distinct types of issues. First, the kernel of the emulator, which is

different from the kernel running on the device, failed to locate the correct initializing program, which is configured

specifically for the device by the device manufacturer. While program paths may vary between firmware images,

the kernel image used in the emulator searches only for pre-defined paths, such as /sbin/init, /etc/init, or

/bin/init, that are included by default in the Linux kernel. As a result, programs on alternate paths, such as

/etc/preinit, cannot be executed properly, resulting in the kernel crashing. This failure frequently occurs in

NETGEAR firmware images. By conducting an in-depth analysis, we discovered that they use preinit as the

path of the initializing program, which is frequently used by an open-source embedded device project, called

OpenWrt [89]. We verified that these NETGEAR devices are indeed implemented based on it. Additionally, we

discovered that some TP-Link images also utilize preinit. To address this issue, Firmadyne built a script that

searches for and executes a hard-coded list of files frequently accessed for initializing programs. However, these

hard-coded candidates do not account for the diverse paths of initializing programs in the wild.

The second issue is that the boot process fails owing to the absence of files or directories, which are required

by the init program. If the program attempts to access such non-existent paths, it will crash and eventually halt the

booting process. Firmadyne attempted to address this by creating and mounting hard-coded paths, such as proc,

dev, sys, or root, at the beginning of the custom booting script. Certain hard-coded paths worked flawlessly; for

example, creating /etc/TZ or /etc/hosts resolved several cases of this failure. This approach, however, is unable

to account for diverse cases. Additionally, because it forcibly creates files and directories before the firmware

initializing itself, it collides with internal programs that create and mount other files or directories in the same paths.

To address these issues, we developed heuristics that extract useful information from the kernel and files in a

firmware image. Note that a firmware image typically consists of a kernel image and a collection of programs stored

in a filesystem. For the first issue, we utilized the kernel that came with the target device firmware. Specifically, we

searched the kernel image for the string literals used in kernel configuration, i.e., kernel’s command line string.

These strings are pre-defined by the device manufacturer during the device’s development stage, and thus are

naturally embedded in the kernel image. This information may include the path to the initializing program, the

type of console, the root directory, the type of root filesystem, or the memory size. As an illustration of these

heuristics, we searched for the string, “init”, in one of NETGEAR’s kernel images and obtained the string,
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“console=ttyS0,115200 root=31:08 rootfstype=squashfs init=/etc/preinit”, which appears to be a kernel

boot argument. We can deduce from this string that the initializing program is located at /etc/preinit. By

configuring the emulated environment with the information obtained, we could boot the kernel appropriately.

Similarly, we addressed the second issue by employing a string literal search strategy on the firmware

filesystem. As a preprocessing stage for booting a firmware image, we extracted strings from the programs in the

firmware filesystem that are highly likely to be program/directory path names. More specifically, we obtained

several strings that start with common Unix system paths, such as /var or /etc. Then, we created directories or

files based on those path values. As a result, we were able to successfully boot many firmware images without

encountering any boot errors.

3.3.2 Heuristics for Handling Network Failures

The next step is to develop heuristics for handling network failures. After the boot procedure is complete, the

network must be configured properly to allow the emulation host to communicate with the emulated firmware. Any

failure in the network configuration will result in the failure of dynamic analysis, even if internal programs such as

web services are running normally. This is because the host system is unable to communicate without networking

capabilities.

During our investigation, we observed several networking failures while emulating firmware images. First,

existing emulation frameworks are incapable of appropriately handling critical network operations, such as IP

aliasing and virtual local area network (VLAN). IP aliasing enables the assignment of multiple IP addresses to a

single network interface, while VLAN enables to network to be logically segmented, creating an isolated network

environment. Both of these features are common in modern wireless routers.

IP aliasing failures are often discovered in D-Link images during network configuration on the host system.

Specifically, when configuring the IP aliases, Firmadyne adds static routing rules for each IP alias to connect the

guest network to the host network. However, it augments a single interface with multiple routing rules, causing

the network to collide. In cases of VLAN failures, Firmadyne disregarded setting the host network, although the

VLAN should be set to group the host and guest networks under the same VLAN id. To properly handle IP aliasing

and VLAN, we developed dedicated routines that automatically configure routing rules and interface settings for IP

aliasing and VLAN. Then, we applied these heuristics to the emulation runtime.

Additionally, we examined cases wherein existing emulation frameworks failed to retrieve information about

network interfaces for certain firmware images. We discovered that some images are unable to obtain an IP address

from external dynamic host configuration protocol (DHCP) servers in order to connect their wide area network

(WAN) interface to the Internet. Because the emulated environment lacks a DHCP server, the emulated firmware is

unable to retrieve an IP address and configure a network interface. Moreover, we discovered that a large number of

ARM-based images are not emulated. Although we were not able to pinpoint the exact cause, we deduced that

these cases resulted from a failure during the boot procedure prior to reaching the network setup phase. To address

these issues, we developed a heuristic that forces the emulated system to set up a default network interface (e.g.,

eth0, a Realtek device), with an IP address of 192.168.0.1, similar to the previous approach [20]. Consequently,

we could avoid such failures.

Lastly, some firmware images in our dataset include a firewall (i.e., iptables) that is configured by default to

prevent unauthorized remote access; this is a common feature of modern wireless routers. As a result, the guest

kernel drops all packets coming from the host. We discovered the majority of these cases in TP-Link, where the

guest is unreachable despite proper configuration of the host and guest networks. This is not an emulation failure,

as setting iptables follows the behavior of real devices. However, such filtering precludes analysis of their potential
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vulnerabilities and threats. In practice, numerous device owners or administrators mistakenly configure these rules,

thereby making the device publicly accessible [87, 2, 90]. Therefore, we developed a heuristic that forcibly flushes

all iptable policies and sets the default policy to accept all incoming packets for further security analysis.

3.3.3 Heuristics for Handling NVRAM Failures

NVRAM is one of the most popular peripheral hardware devices for IoT devices including wireless routers.

NVRAM is a type of flash memory that functions as a simple key/value storage. It stores various information for

running devices, such as configurations of the device itself or other peripheral devices. In essence, the information

stored in the NVRAM is required for peripherals and the target device to operate properly.

Because internal programs in firmware store/fetch configuration values to/from the NVRAM, it must be

emulated correctly. Internal programs in IoT firmware frequently communicate with the NVRAM via libraries

in their firmware. To take advantage of this feature, other emulation frameworks developed an additional library

that simulates the NVRAM’s interaction in order to run the firmware without actually having the real NVRAM.

For instance, Firmadyne [17] implements a custom library called libnvram to emulate the NVRAM. This custom

library is loaded on top of other libraries using the environmental variable called LD_PRELOAD, which forces internal

programs to use it instead of the original library that interacts with the physical NVRAM. To emulate fetching

and storing key-value pairs, the custom library intercepts NVRAM-related functions, such as nvram_get() and

nvram_set(). To initialize the key-value pairs, it searches for and uses values from a hard-coded list of default files

in the firmware. These default files are frequently present in recent IoT devices for factory reset functionality. For

unknown keys, the custom library naively returned the NULL value.

However, relying on a hard-coded list may not suffice to cover diverse devices. We discovered many failures

in D-Link and NETGEAR images, which use alternative default file paths not included in the hard-coded list.

/etc/nvram.default and /mnt/nvram_rt.default are two examples of such default file paths. Additionally, we

found that several key-value pair patterns are distinct from those used in the custom library (e.g., OBJ, ELM).

To address these issues, we developed a heuristic strategy that automatically searches the firmware filesystem

for the requested values. Specifically, we ran the firmware in our emulation environment to monitor the nvram_get()

and nvram_set() functions for all fetched (required) keys during the first stage of emulation. Note that emulating

such keys in the first stage would almost certainly fail. Then, we scanned the firmware filesystem for files that

contained multiple instances of the recorded keys and extracted their corresponding values from those files. By

performing this iteratively, we were able to obtain the majority of the required keys to emulate the NVRAM of the

target device.

The heuristic may fail if we are unable to find the matching values for the requested keys to the NVRAM. To

handle these unknown key/value pairs, we extended the custom library to return a valid pointer to an empty string

as a value instead of a NULL pointer. This heuristic is based on the fact that many programs pass the returned value

as an input to string-related functions, such as strcpy() or strtok(). Thus, returning a NULL value results in the

program crashing immediately, whereas returning a zero-length valid string executes such functions successfully.

As a result of this strategy, NVRAM-related crashes were significantly reduced, and programs were able to run

properly even when the correct configuration values were unknown.

3.3.4 Heuristics for Handling Failures in Kernel

In addition to NVRAM, internal programs can co-operate with peripheral devices via kernel modules, also

known as device drivers. They typically communicate with peripherals using ioctl commands. Unfortunately,

emulating this procedure is not straightforward, as each device driver has distinctive characteristics, depending

15



on its developers and corresponding device. For example, if the kernel or its modules are not compatible with the

actual device, the firmware programs will be unable to interact with the peripheral devices and may subsequently

crash.

We investigated these failures and discovered that Firmadyne is running kernel version v2.6.32, which is

incompatible with recent features used in target devices. In this case, simply upgrading the kernel to a newer

version, e.g., v4.1.17, resolved the majority of failure cases and successfully emulated more firmware images.

However, some firmware images, particularly those from the past, were not emulated by the new kernel

version. These images failed due to a crash in the libc library. We investigated these cases and determined that the

address space layout randomization (ASLR) of Linux kernel v4.1.17 is incompatible with older versions of libc. To

address this, we compiled the new kernel with a compatibility option. Specifically, we set the CONFIG_COMPAT_BRK

option, which disables the randomization of the brk area in heap memory. Using this new kernel, we were able

to handle the aforementioned cases. Other compatibility issues may exist that our experiment did not detect. To

address these issues, multiple kernel versions with various compiling options should be investigated further, which

is one of the objectives of our future research.

Apart from kernel version compatibility issues, firmware emulation may fail if the kernel drivers are unable to

communicate with the firmware programs. This issue is similar to that of the NVRAM; the device driver should

return values that correspond to specific requests. Firmadyne addressed the issue similarly to the NVRAM. That is,

they implemented a dummy kernel module that mimics the interaction between the kernel modules in firmware and

peripheral devices by hard-coding device names and ioctl commands. This approach results in a high number of

emulation failures, as the values passed to and returned from the call vary significantly depending on the firmware

and device architecture. Such instances were discovered in NETGEAR images that make use of a module called

acos_nat to communicate with a peripheral device mounted on /dev/acos_nat_cli. In those images, Firmadyne’s

module returns incorrect values and fails to run a web service, httpd. Additionally, we confirmed that ioctl

commands vary by firmware architecture.

To resolve this issue, we developed a heuristic strategy similar to the one used to address NVRAM issues

(§3.3.3). Instead of creating a dummy kernel module, we implemented a shared library with wrapper functions

that return pre-defined values regardless of the ioctl interface/parameter variant. Because these wrapper functions

operate as a high-level abstraction, each ioctl command does not need to be emulated for each device architecture.

While we focused on acos_nat in this example, other peripheral accesses via shared libraries can be handled

similarly. As a result of this heuristic, firmware programs can continue to execute without encountering system call

errors.

3.3.5 Heuristics for Handling Internal Program Failures

Apart from the booting, networking, NVRAM, and kernel issues, executing applications can be disturbed

during the emulation. Running applications is the most critical step in dynamic security testing because applications

in firmware contain the device’s core logic, which is the actual target of security testing. We discovered several

issues, particularly from the web interfaces.

First, web server applications in some images failed to run despite a successful network setup. We expect

that the network device will be set up after the web server has been run during emulation; thus, the web server

was unable to bind to the network device. In this case, we developed a heuristic that forcibly runs the web server

after the entire initialization step is complete. Specifically, the heuristic searches the firmware filesystem for a

widely used web server program (e.g., httpd, lighttpd, boa, goahead) and its corresponding configuration file.

The heuristic then executes the web server with the configuration file.
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Figure 3.2: FIRMAE architecture overview

Additionally, missing files in the firmware filesystem that are required for an emulation environment can

result in emulation failure. The emulated environment can be missing these files because many developers of IoT

devices remove unnecessary programs from the filesystem to reduce the size of device firmware. However, in an

emulation environment where the heuristics are used, we may require multiple configuration tools, such as mount,

ln, ifconfig, and ip. Without such tools, emulation will fail and the applied heuristics will be ineffective. To

address this issue, we installed the latest version of busybox, a swiss-army knife for the Unix box, in order to supply

the emulation environment with the necessary command-line tools.

Lastly, emulation may take an inordinate amount of time. Firmadyne set a 60-second timeout period. However,

firmware images, particularly those from NETGEAR, take a longer time to complete their booting procedure.

As a result of Firmadyne’s short timeout, successful emulation was prevented. We investigated such cases and

empirically determined that 240 s is an appropriate timeout. Although this change was straightforward, it resulted

in the successful emulation of over 60 firmware images.

3.4 FirmAE: Systematizing Heuristics Learned

We systematized the heuristics learned from our in-depth failure analysis. We implemented a prototype system,

named FIRMAE, based on Firmadyne [17]. For this, we wrote a total of 3671 lines of code (LoC) in Python

and shell scripts. Figure 3.2 depicts a component-wise overview of FIRMAE. The key difference of FIRMAE

from Firmadyne is that, in addition to the techniques developed by Firmadyne, FIRMAE employs a variety of

systematized heuristics to increase the success rate of emulation. From steps 1 through 5 of Figure 3.2, FIRMAE

applies corresponding heuristics to prevent detected emulation failures. Additionally, we added interfaces for

dynamic security analysis to FIRMAE, which we will detail in §3.5.3.

To facilitate practical large-scale firmware emulation, FIRMAE provides two functionalities: automation and

parallelization. To fully automate FIRMAE, we automated all user interactions and added an evaluation procedure

that periodically checks the emulation requirements (i.e., network accessibility and web service availability). To

accomplish this, we built a checker module that periodically runs the ping and curl commands and reports on

whether the emulation environment meets the requirements.

Additionally, we parallelized the emulation procedure to run multiple firmware images effectively. For this,

we leveraged Docker [91], which is one of the most popular containerization frameworks. Containerization enables

each firmware image to be emulated independently within a container that contains all necessary packages and

17



dependencies. Moreover, containerization helps us to take advantage of abstracting the network connection between

the host and the guest systems. QEMU [37], the base emulator of FIRMAE, creates an additional network interface

(i.e., TAP) in the host system. This interface is linked to one of the guest system’s network interfaces. Thus, each

emulated firmware should have a separate interface with a unique IP address in the host system; otherwise, the

network will collide. Because containerization isolates the network environment of each container, packets from

the host system can be routed properly to the guest even during parallel emulation. We also placed our checker

module for automation and dynamic analysis engine inside each container. Consequently, firmware images can be

emulated and analyzed quickly and reliably; FIRMAE can emulate a large number of firmware images in parallel

by running the corresponding number of container instances.

3.5 Evaluation

In the following, we evaluate FIRMAE, which systematizes our heuristics, for its effectiveness in firmware

emulation and dynamic security testing.

3.5.1 Experimental Setup

To assess the effectiveness of FIRMAE, we first established our dataset from the top eight wireless home router

vendors [88]. We collected 1,306 firmware images from vendors’ websites and unpacking them using Binwalk [26]

to extract filesystems. Then, we filtered them by determining whether the operating system of each image is ARM

little-endian (ARMel), MIPS little-endian (MIPSel), or MIPS big-endian (MIPSeb). These architectures account

for more than 97% of our initial collection. To further evaluate our approach, we also prepared firmware images for

IP cameras in the same manner.

Our final dataset contains a total of 1,124 firmware images, including 1,079 images of wireless routers and 45

images of IP cameras. We categorize them as three datasets: AnalysisSet, LatestSet, and CamSet. Their summary

is presented in Table 3.2 along with the emulation result, while a more detailed version is shown in Table 3.5. The

AnalysisSet contains 526 outdated images from 3 vendors, whereas the LatestSet and CamSet contain only the

latest firmware images as of December 2018. The LatestSet has 553 latest images from 8 vendors, including the

vendors covered by the AnalysisSet, and the CamSet includes 45 latest images from 3 vendors. Accordingly, the

AnalysisSet may contain multiple firmware versions per device, whereas the LatestSet and CamSet have only one

image per device. There is no overlap between the datasets, i.e., they do not share an identical image. We analyzed

emulation failure cases using the AnalysisSet. As a result of our analysis, we developed several heuristics to

address the failures and increase the emulation rate. We systematized these heuristics into FIRMAE and evaluated

it against the LatestSet and CamSet.

All of our experiments were conducted on a server powered by four Intel Xeon E7-8867v4 2.40 GHz processors,

896 GB DDR4 RAM, and a 4 TB SSD. We installed Ubuntu 16.04 with PostgreSQL v9.5.14 [92] and Docker

v18.09.4 [91] on the server.

3.5.2 Effectiveness of Heuristics in IoT Firmware Emulation

To evaluate the effectiveness of systematized heuristics in firmware emulation, we emulate each dataset using

FIRMAE and Firmadyne. In this experiment, we evaluate three questions:

• Q1: How do well-systematized heuristics emulate firmware images more successfully than the existing

framework?
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Table 3.2: Emulation results of running firmware images using Firmadyne and FIRMAE.

Firmadyne FIRMAE

Dataset Vendor Images Net Web Net Web

AnalysisSet

D-Link 179 55 54 (30.17%) 177 167 (93.30%)
TP-Link 73 26 5 ( 6.85%) 73 59 (80.82%)
NETGEAR 274 86 30 (10.95%) 259 257 (93.80%)

Sub Total 526 167 89 (16.92%) 509 483 (91.83%)

LatestSet

D-Link 58 18 17 (29.31%) 54 48 (82.76%)
TP-Link 69 33 10 (14.49%) 69 54 (78.26%)
NETGEAR 101 30 7 ( 6.93%) 92 79 (78.22%)
TRENDnet 106 35 23 (21.70%) 91 63 (59.43%)
ASUS 107 27 25 (23.36%) 63 62 (57.94%)
Belkin 37 2 2 ( 5.41%) 30 22 (59.46%)
Linksys 55 13 8 (14.55%) 48 44 (80.00%)
Zyxel 20 3 0 ( 0.00%) 18 10 (50.00%)

Sub Total 553 161 92 (16.64%) 465 382 (69.08%)

CamSet

D-Link 26 0 0 ( 0.00%) 19 17 (65.38%)
TP-Link 6 0 0 ( 0.00%) 6 0 ( 0.00%)
TRENDnet 13 2 2 (15.38%) 10 10 (76.92%)

Sub Total 45 2 2 ( 4.44%) 35 27 (60.00%)

Total 1,124 330 183 (16.28%) 1,009 892 (79.36%)

Net: network accessibility, Web: web service availability.

• Q2: Are the heuristics learned from older firmware images transferrable to newer firmware versions?

• Q3: Are the heuristics transferrable to other IoT devices besides wireless routers?

As our goal is to emulate web services for dynamic analysis, we verify the network accessibility and web

service availability for each emulated firmware. Henceforth, we will refer to the web service availability as the

emulation rate. The final results are listed in Table 3.2. As FIRMAE is fully automated and parallelized, the total

emulation time for all datasets took less than 4 h (14289 s).

Overall, the emulation rate increased significantly from 16.28% to 79.36% (by 487%), corroborating Q1.

Because our investigation is based on the AnalysisSet, it shows the highest emulation rate of 91.83%. The

emulation rates for the LatestSet and CamSet also demonstrate a significant improvement over those obtained by

Firmadyne, supporting both Q2 and Q3. In AnalysisSet, the emulation rate of NETGEAR images increased the

most, from 10.95% to 93.80% (by 857%), owing to the heuristics that forcibly set up the default network interface.

TRENDnet, ASUS, Belkin, and Zyxel all have emulation rates of less than 60% in the LatestSet. These lower

rates are attributed to the increased number of kernel modules in these images and the use of custom hardware

interfaces. We detail this in the following section (§3.6).

Additionally, we investigate the effectiveness of each heuristic category by omitting a specific category from

the final version of FIRMAE, which incorporates all heuristics. This is because heuristics should cooperate to

address failures; thus, omitting a specific category of heuristics has a direct effect on the emulation rate. Figure 3.3

depicts these results, and a more detailed version is included in Table 3.6.

The heuristics used to address NVRAM issues appear to be the most effective, decreasing the emulation rate

by 35% on average across all datasets. This result is consistent with the Firmadyne approach, which focuses on

NVRAM emulation. Omitting heuristics for boot and network issues also significantly drops the emulation rate by

≈30%. Without the heuristics for kernel issues, only 4.88% of firmware images across all datasets were affected.

The heuristics for resolving internal program issues affected 22.35% of firmware images. These results demonstrate

that each of the proposed heuristic categories is indeed effective and scalable for successful firmware emulation.

The emulation rates for CamSet indicate that resolving failure issues of wireless routers can also aid in
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Figure 3.3: Emulation rates obtained by omitting a specific heuristic category from the final version of FIRMAE.

emulating IP cameras. In particular, Firmadyne was unable to emulate any of the D-Link images, whereas FIRMAE

was able to emulate more than 65% of the images. Nevertheless, FIRMAE is incapable of emulating all TP-Link

images. We looked into these failed cases and discovered that they lacked web servers. The results of CamSet

demonstrate that many IP cameras share similar characteristics to wireless routers, implying that heuristics for

wireless routers can be applied to IP cameras as well.

3.5.3 Dynamic Analysis Capabilities of Firmware Emulation with Heuristics

FIRMAE relies on an imperfect emulation of firmware devices based on heuristics from empirical observations.

Thereby, its capability of applying dynamic security analysis would be questionable, i.e., whether FIRMAE can be

used for discovering security vulnerabilities or not. To demonstrate that systematized heuristics are indeed effective

for bug discovery, we evaluate the following two questions:

• Q4: Can exploits for known vulnerabilities (i.e., 1-days) be used against firmware running on FIRMAE?

• Q5: Is it possible for dynamic analysis to discover new vulnerabilities (i.e., 0-days) against firmware running

on FIRMAE?

The primary step in the dynamic analysis is to initialize web services unless they do not receive any other

requests. A large portion of the web services in our dataset requires a network and security configuration (e.g.,

admin or AP password) in the admin pages, and this initialization procedure differs in each firmware. Web servers

in most firmware images in D-Link, TP-Link, Belkin, Linksys, and ZyXEL automatically initialize themselves after

successful emulation, whereas those in ASUS and TRENDnet must be initialized in person. Fortunately, many

of the web servers have a skip button to configure default options. Some web services do not explicitly have a

skip button, but have internal JavaScript functions that behave identically. Meanwhile, some require a manual

admin password. To automate the initialization process, we empirically analyzed each web service and extracted

representative patterns of buttons and menus from their initial web pages. Then, we utilize the extracted patterns

and automate the process. For this, we leveraged Selenium [93], which is an open-sourced tool that can provide an

interface like a real browser.
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Table 3.3: Number of 1-days discovered on the outdated firmware images (AnalysisSet)

Firmadyne FirmAE

Vulnerability Category # of PoC # of Images (Unique) # of Images (Unique)

Information leak 2 0 (0) 17 (17)
Command injection 9 10 (6) 152 (65)
Password disclosure 2 4 (3) 146 (99)
Authentication bypass 2 0 (0) 5 (5)

Total 15 14 (9) 320 (128)

Table 3.4: Number of new vulnerabilities discovered on the latest firmware images (LatestSet and CamSet)

Type Vulnerability Category # of Vulns # of Devices # of Vendors

1-day

Information leak 2 32 2
Command injection 5 28 2
Backdoor 2 3 1
Path traversal 2 9 2

0-day
Command injection 7 16 2
Buffer overflow 5 7 4

Total 23 95 6

To test Q4, we launched 1-day exploits using RouterSploit [28] on each emulated firmware image in

AnalysisSet by FIRMAE and Firmadyne, respectively, and Table 3.3 demonstrates the result. Note that the

web service of each image is already initialized as described above. While 14 exploits worked on firmware emulated

without applying any heuristics (i.e., Firmadyne), 320 exploits worked on firmware emulated by applying all the

proposed heuristics (i.e., FIRMAE), supporting Q4. Here, a working 1-day exploit indicates that it can discover

such a vulnerability from the image. Consequently, dynamic analysis on firmware images emulated with FIRMAE

can discover significantly more vulnerabilities than that on images emulated with Firmadyne. Note that all the

identified vulnerabilities are located in web services, such as SOAP CGI, UPnP, and HNAP.

To test Q5, we ran images from LatestSet and CamSet, which contains only the latest firmware images, to

check if FIRMAE can help discover new vulnerabilities via dynamic security testing. In this regard, we define

vulnerabilities as 1) known but remaining unpatched on the latest version or the different models (1-days), or 2)

new (0-days). Table 3.4 lists the unique number of newly identified vulnerabilities, affected devices, and their

corresponding vendors. First, we launched 1-day exploits from RouterSploit [28] as the same approach described

above and discovered 11 1-day vulnerabilities affecting 72 unique devices. To discover 0-day vulnerabilities, we

implemented a simple fuzzer with 880 LoC in Python; the fuzzer generates crafted requests and sends them to the

emulated web services, 12 new 0-day vulnerabilities affecting 23 unique devices. These results support Q5. In the

following, we detail how our fuzzer operates.

Our fuzzer first searches the filesystem of the target firmware and generates a list of web page candidates

by checking the extension of files, such as .html, .aspx, or .xml. Then, it extracts possible parameters from the

candidates and generates requests to detect vulnerabilities. For example, for the .htm and .html candidates, the

fuzzer parses the HTML tags, such as script, form, and input, to extract target URLs, methods, and parameter

information. This approach is particularly helpful in building requests for devices that use the home network

administration protocol (HNAP). The HNAP request is based on the XML format, and the default value is set up in

the javascript code of a .html page. By utilizing the extracted information, the fuzzer can construct a valid request

template for fuzzing. Because it searches for candidates from the filesystem, it could also check web services that

are not reachable by crawling.

Among the various types of vulnerability, we focus on command injection and buffer overflow, as they are
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often found in embedded devices. To detect command injection vulnerabilities, our fuzzer sends payloads, which

are essentially a combination of candidate characters, such as ’‘’, ’"’, or ’&’, followed by a shell command

executing our own program. We place this program to log useful information, such as time and environment

variables, thereby checking if the vulnerability is triggered. We also hook the execve system call, to easily detect if

our inputs are injected in the command. For buffer overflow detection, FIRMAE provides feedback when a crash

occurs. We also utilized boundary values, such as a large-sized buffer, when generating fuzzing inputs, as they are

more likely to trigger vulnerabilities.

Any bugs reported by the fuzzer must be verified. For this, we added debugging programs, such as strace,

gdb, and gdbserver to the filesystem of target firmware. Note we could utilize the ptrace system call for debugging

as we upgraded the kernel version (§3.3.4). We also added netcat and telnetd to access the guest shell. With

these tools, we manually verified the identified bugs.

By using the fuzzer, we identified 12 new 0-day vulnerabilities affecting 23 unique devices. We reported

all discovered 0-days to the corresponding vendors, and these were acknowledged by Dec. 2019. Each fuzzing

request took an average of 10–15 s when running 50 images in parallel, and the average time spent for finding each

vulnerability was 70 min, with a maximum of 150 min. The fuzzing throughput can vary according to the system

spec and the number of parallel emulation instances.

In summary, the dynamic analysis results demonstrate that the heuristic-based emulation approach of FIRMAE

is effective for vulnerability analysis, supporting both Q4 and Q5.

3.6 Post-Emulation Analysis

3.6.1 Analyzing Unhandled Failure Issues

While our heuristics significantly increased emulation success rates and facilitated vulnerability discovery,

they may not be applied to new types of devices or configurations owing to the hardware/environmental diversity in

the IoT ecosystem. After running firmware images with FIRMAE, we investigate unhandled failures that cannot be

resolved with simple heuristics but require more complex virtualization.

First, as discussed in previous studies [16, 17, 18, 19, 20], emulating kernel modules is not straightforward

because 1) different kernel versions frequently cause compatibility issues and 2) some firmware images may be

devoid of a kernel, rendering useful information unavailable. In a few cases, web servers and other programs made

use of kernel modules located in the /proc directory. Those programs often crashed because such files were not

present in the emulated environment. Web servers in TP-Link firmware images, for example, attempted to access a

kernel module located at /proc/simple_config/system_code and subsequently crash due to the module’s absence.

Moreover, some internal programs of the firmware utilize their own dedicated interfaces for peripheral commu-

nication, further hardening their emulation. For instance, we emulated an NVRAM using popular library calls. How-

ever, certain D-Link firmware programs used the /bin/flash command to directly access /dev/nvram. Similarly,

in a few TP-Link firmware images, httpd servers accessed a flash memory located at /dev/ar7100_flash_chrdev

in order to retrieve device configuration information. Meanwhile, in Linksys firmware, web servers named webs

directly manipulated the /dev/mtd interface. They also verified the firmware’s integrity, signature, and version.

Lastly, while web servers are accessible, some of them rarely respond with a server error, such as a 500

Internal Server Error. This error can be caused by various factors, including syntax/code errors in CGI programs,

incorrect web interface configuration, or errors. However, the majority of error cases are a result of backend CGI

program crashes. We used reverse engineering to analyze the CGI programs and discovered that they all suffer from

the same hardware interface issues. They attempted to access entries under /proc or /dev to obtain configuration
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values and, if not successful, terminate abnormally.

These cases present the difficulty of emulating peripheral communication without physical devices. In this

regard, we believe that further empirical investigations to develop additional heuristics is indispensable to deal with

the convoluted nature of the IoT ecosystem. However, as shown in Q2 and Q3, the developed heuristics can be

transferred to newer device versions and similar device families. Therefore, we encourage further research into

developing and systematizing heuristics through hands-on failure analysis.

3.6.2 Lessons Learned from Vulnerability Analysis

We discovered two interesting points during our investigation into vulnerability analysis. First, we discovered

that several vendors are affected by the same vulnerabilities. For example, certain D-Link and TRENDnet devices

share the same vulnerabilities in UPnP and SOAP CGI programs, i.e., a information leaking vulnerability and

a command injection vulnerability. Meanwhile, certain NETGEAR devices share Xiongmai’s path traversal

vulnerability. From these examples, we can deduce that similarity-based analysis techniques may be effective for

vulnerability analysis of IoT devices, which we will describe in Chapter 6.

Another point worth noting is the effectiveness of system-level emulation. During our investigation, we

discovered that analyzing a target web service can reveal vulnerabilities in other programs that are associated with

it. Specifically, when we sent a large payload to detect buffer overflow, the payload was stored in a file by a target

CGI program. Then, as a result of the large payload, another program that reads the written file crashed. This

vulnerability is only detectable in a system-level emulation environment, as user-level emulation does not consider

filesystem relationships.

3.7 Discussions

In this study, we developed a simple analysis engine for dynamic analysis that automatically initializes, logs

into, and analyzes web services. Each step, however, can be further improved by incorporating other promising

techniques. For instance, symbolic execution can be used to analyze and bypass the login procedure [12]. Moreover,

by adopting other dynamic tools [28, 29, 30, 31, 32, 33, 15, 34, 35, 36], fuzzing strategies [94, 95], hybrid analysis

approaches [96, 97], or similarity techniques [57, 63], one may discover additional vulnerabilities. We leave such

promising improvements to the dynamic analysis engine as future work.

Additionally, successful firmware emulation can be used to establish a honeypot for the analysis of various

attacks targeting IoT devices. In practice, there have been several emulation-based honeypot approaches [20, 98,

99, 100]. Vetterl et al. [20], in particular, created a honeypot named Honware by emulating device firmware in

a manner similar to that used by FIRMAE. The authors investigated emulation failure cases in order to increase

the network accessibility rate. Accordingly, FIRMAE’s approach to configuring a default network setting is fairly

similar to Honware’s. However, FIRMAE includes additional heuristics for running web services, which increased

the emulation rate even further and enabled active analysis of web service vulnerabilities. As a result, we believe

that empirical analysis and the development of heuristics for successful firmware emulation are also required when

building an IoT honeypot.

3.8 Conclusion

Recent advancements in dynamic security testing, such as automated pentesting, fuzzing, and symbolic

execution, and their combination, can discover security vulnerabilities automatically in a scalable manner. By
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applying such dynamic analysis to the IoT ecosystem, it is possible to enhance its security, particularly by

harnessing the testing scalability to deal with numerous available devices. However, emulating device firmware

itself is challenging owing to the convoluted nature of IoT device hardware/software implementation practices.

In addition to Firmadyne [17], several approaches [18, 19, 38], have attempted to precisely emulate hardware

devices by modeling memory-mapped input/output operations in peripheral communication [18, 19] or by building

an abstract layer to deal with hardware emulations [38]. These approaches are essential in the long run to achieve

better accuracy in testing; however, such frameworks continue to face limitations in terms of covering firmware

across highly diversified IoT devices.

We believe that accumulating heuristic knowledge for circumventing firmware emulation failures is the

final step towards overcoming such limitations. Systematizing the heuristics learned from failure cases enables

large-scale firmware emulation, as such heuristic knowledge is transferrable to newer device versions and similar

device families. We recommend that future research conduct additional empirical investigations, systematize, and

share the resulting knowledge for scalable dynamic security analysis of IoT ecosystems.
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Chapter 4. Towards Large-Scale Firmware Structure Analysis

In the previous chapter, we demonstrated the efficacy of systematized heuristics for successful firmware

emulation for dynamic security analysis of IoT devices, particularly wireless routers and IP cameras. Unfortunately,

such an emulation-based analysis approach may not be applicable to other types of IoT devices, which exhibit

characteristics that are fundamentally different from those of wireless routers and IP cameras. For example,

baseband is one of such devices; it performs a variety of complex functions, such as real-time signal processing, and

communicates with multiple peripherals. Notably, the baseband’s firmware runs as a real-time operating system.

Therefore, emulating baseband firmware and conducting dynamic security analysis on it is still an unresolved

research problem.

To investigate this issue further in the context of analyzing complex IoT devices, we chose the smartphone

cellular baseband as our case study target, as it plays a crucial role in mobile communication. Although users

interact primarily with the interfaces of user applications running on an application processor, all application data is

transferred via a separate processor called a baseband processor (BP), which is dedicated to radio communication.

To provide seamless network services to users, the BP runs its software as a single executable, which is typically a

real-time operating system, and communicates continuously with cellular networks via a variety of cellular protocol

messages.

The security of baseband software is critical because if it is compromised, any data in transit can be sniffed or

even spoofed. Therefore, researchers have attempted to analyze its security, particularly for cellular layer 3 (L3)

protocols that manage core operations, such as mobility/session management or cryptographic operations to ensure

user privacy. Nonetheless, these approaches to baseband analysis are limited to only a small portion of baseband

software or a few baseband models/versions. The key problem here is the obscurity and complexity of baseband

firmware; vendors are reluctant to publish details about their baseband. Therefore, existing approaches have relied

on black-box approaches [72, 73, 74, 78] or on ad-hoc manual inspection [76, 77, 75].

To conduct a scalable security analysis of baseband software, it is necessary to unveil its firmware structure.

This procedure is comprised of three steps: 1) analyzing the memory layout where the firmware will be loaded;

2) identifying function boundaries from unknown byte codes; and 3) detecting a target function (e.g., an L3

protocol message decoder) among the numerous identified functions. To achieve this, we first investigated existing

approaches to firmware structure analysis of IoT devices. During our literature study, we discovered that existing

studies have focused on relatively simple Linux-based devices, such as wireless routers, IP cameras, and printers,

but not on complex devices, such as baseband. Furthermore, the majority of studies [46, 47, 48, 49, 50, 51] have

focused on identifying function boundaries (i.e., the second step), but not on the other two steps. Even such

approaches to function identification are limited to simple IoT devices or a few architectures (mostly x86, a few

ARM).

Analyzing baseband firmware is not trivial because its size is extremely large (i.e., over 30 MB), and it contains

a large number of functions (i.e., over 90K) associated with complex cellular protocols. To see the impact of this

issue in practice, we obtained 18 baseband firmware images (based on the ARM architecture) from one of the top

three smartphone manufacturers and analyzed them using IDA Pro [101], the state-of-the-art binary analysis tool.

Notably, IDA Pro identified fewer than 600 functions on average (in 30 MB firmware); thus, no further security

testing was feasible.

To tackle these issues, we propose that well-systematized heuristic workarounds can enable successful firmware

structure analysis of baseband for further scalable security testing. We discovered that by empirically analyzing the
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Figure 4.1: High-level overview of a cellular network architecture.

baseband firmware from the beginning (i.e., binary loading), simple heuristics can accomplish the three steps of

firmware structure analysis (i.e., memory-layout analysis, function boundary identification, and target function

detection). By systematizing these heuristics and integrating them into IDA Pro as plugins, we were able to identify

≈124 times more functions and successfully detect our target function (i.e., L3 message decoder function) from the

18 firmware images we collected. After detecting the target function, we further analyzed its processing routine and

discovered nine distinct bugs, including two critical 0-day vulnerabilities for remote code execution (RCE). We

discovered a total of 78 functional bugs and 56 memory-related vulnerabilities from the 18 firmware images.

This chapter 1) demonstrates the efficacy of well-systematized heuristics for analyzing the firmware structure

of complex IoT devices, such as baseband, and 2) summarizes how we discovered and systematized such heuristics.

4.1 Preliminaries for Cellular Baseband Analysis

4.1.1 Cellular Network Architecture

Figure 4.1 illustrates a high-level view of the cellular network architecture. Cellular networks are composed of

mainly three components: cellular devices, base stations, and the core network. These components are referred to

differently in each cellular generation. For example, NodeB, eNodeB, and gNodeB denote the 3G, 4G, and 5G base

stations, respectively. In this paper, we will refer to them as generic terms for simplicity.

A cellular device is any device that is located at the network’s edge and enables users to access cellular

services. The most common cellular device is a smartphone. A cellular device usually has two separate processors:

an application processor (AP), which runs mobile operating systems and user applications, and a cellular BP,

which handles radio/digital signal processing. A base station provides cellular devices with a wireless connection.

Through the radio interface, it transmits messages from the core network to a cellular device and vice versa. Thus, it

is responsible for managing radio resources in order to improve service quality for users. A core network performs

core procedures such as mobility and session management, as well as critical user identification and security

services, such as encryption and integrity checks.

As with the OSI model, the cellular protocol stack is composed of multiple layers. The air interface of cellular

networks is located between layers 1 and 2 of the OSI model, and is comprised of the physical layer (PHY) and the

medium access control layer (MAC). Then, on layer 3, various core procedure messages are delivered. To properly

manage these layers, each cellular device’s baseband also implements this cellular protocol stack. Additionally,

the latest 4G/5G cellular devices support backward compatibility with earlier 2G/3G cellular technologies for cell

coverage and roaming.
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Table 4.1: Cellular L3 protocols and their specification documents.

PD Description Abbrev. Spec No.

0 Group Call Control GCC 44.068
1 Broadcast Call Control BCC 44.069
2 EPS Session Management ESM 24.301
3 Call control; call related SS CS 24.008
4 GPRS Transparent Transport Protocol GTTP 44.018
5 Mobility Management MM 24.008
6 Radio Resources Management RR 44.018
7 EPS Mobility Management EMM 24.301
8 GPRS Mobility Management GMM 24.008
9 Short Message Service SMS 24.011
10 GPRS Session Management SM 24.008
11 non-call related Supplementary Services SS 24.080
12 Location Services LCS 23.271
14 Reserved for extension - -
15 Tests procedures - 36.509

PD stands for the 4-bit protocol discriminator.

4.1.2 Cellular Layer 3 Protocols

Among various cellular protocols, layer 3 (L3) protocols are responsible for complex core functions, such as

mobility management, session management, and even cryptographic operations to protect users’ private information.

These protocols are defined in the cellular specification documents. The L3 protocols are listed in Table 4.1, along

with their protocol discriminators (PDs) and document numbers. Each specification document defines the details of

messages in the corresponding protocol, such as message formats or directions. Due to the complexity of their

implementations, numerous errors have been observed [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]. These L3

protocols are not limited to a single cellular generation, such as GSM or LTE, but rather span generations including

several distinct protocols [102]. It is worth noting that an L3 message can be transmitted to a cellular device (i.e.,

downlink) or to the core network (i.e., uplink). In this paper, we only consider the downlink, as our analysis target

is the baseband in a smartphone.

4.1.3 Baseband Processor and Software

A BP is a dedicated processor in a cellular device that is responsible for managing all radio functions associated

with cellular communication, including digital signal processing. To meet the real-time requirements of radio

communication, it runs a real-time operating system as its firmware. Therefore, its firmware operates as a single

executable, and we refer to baseband firmware as a baseband binary.

Baseband software is typically proprietary, and manufacturers do not share detailed information about it, such

as the source code. For instance, Qualcomm’s Snapdragon, MediaTek’s Helio, and Samsung’s Exynos are the top

three system-on-a-chip products that contain a BP [103]. None of these manufacturers, however, provide detailed

information about their products. As a result, researchers perform reverse engineering on baseband software in

order to analyze and identify security flaws [104, 105, 106, 107, 41]. Additionally, each baseband may have a

unique architecture based on the design choice. For example, while Exynos and Mediatek are based on the ARM

architecture, Snapdragon is based on their own architecture called Hexagon. Therefore, analyzing baseband requires

a tool that is compatible with the target baseband architecture.

When baseband software processes L3 protocol messages, it first classifies the message’s PD and identity.

Then, using the message structure defined in the specification, it parses and decodes the message. After decoding

the message, it takes an appropriate action on each piece of decoded data.
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4.1.4 Challenges in Baseband Firmware Analysis

There are several challenges in analyzing baseband firmware. First, cellular baseband firmware remains largely

unknown because vendors do not make its details public. The reason for this could be to safeguard their proprietary

implementations and make them difficult to be analyzed. Notably, the security impact of baseband vulnerabilities

is critical. Because baseband controls radio communication, its vulnerabilities can be remotely exploited using a

software-defined radio (SDR). Therefore, this can have a detrimental effect on the users’ privacy, as well as the

vendors’ finances or reputations. Consequently, any information about the baseband firmware remains obscure,

such as its structure, memory layout, or initialization procedure. This obscurity significantly complicates firmware

analysis, and analysis against it requires significant manual effort.

To reduce such manual efforts, one may use memory dumps [76, 77], which reflect the initialization steps

for memory layout and include runtime information. However, this approach is not suitable in practice because

obtaining memory dumps requires real devices, as well as a special feature (e.g., a hidden dump menu available

only on older Android devices) or vulnerability to trigger it. To obtain memory dumps, one may utilize a hardware

debug interface, such as JTAG; however, such an interface is also disabled on recent devices. Therefore, memory

dumps may not be suitable for scalable firmware analysis. Notably, even memory dumps require additional analysis

to determine function boundaries and target functions, which is fundamental for subsequent security analysis.

Moreover, automating the baseband analysis is essential to achieve scalability and applicability; however,

this is not a simple task. Researchers have focused on manual analysis to uncover the obscurity of baseband

firmware [75, 76, 77]. However, this method is fundamentally limited in terms of scalability and applicability due

to the extremely large size of baseband firmware (tens of MBs) and the presence of numerous non-trivial features to

analyze, such as cryptographic operations. Without automation, it is nearly impossible to investigate numerous

functions for hundreds of L3 protocol messages. Thus, previous research has heavily relied on a black-box-based

dynamic analysis techniques, such as fuzzing, in conjunction with physical devices [72, 73, 74, 75]. These

approaches, however, are insufficient because many baseband vulnerabilities are difficult to trigger dynamically

owing to the convoluted states of L3 protocols. Additionally, these approaches rely on an explicit oracle to identify

bugs, such as a program crash, limiting them to a few bug types. Even similar vulnerabilities frequently remain

undetected.

Due to these difficulties, assessing the security of various baseband models or versions, even within a single

vendor, remains an open research question. To conduct a scalable security analysis of numerous baseband devices,

a scalable firmware analysis approach should be developed.

4.2 Scaling up Firmware Structure Analysis for Security Testing

To conduct a scalable security analysis of baseband software, it is necessary to first analyze its firmware

structure. For this, there are mainly three requirements: 1) analyzing the memory layout on which the firmware will

be loaded 2) identifying function boundaries in a stream of byte codes, and 3) detecting a target function among

the numerous identified functions. If the analysis of the firmware structure satisfies these requirements, further

analysis can be performed on the target function. Therefore, we focus on developing heuristics that satisfy these

requirements.

For the cellular baseband, we focused on one of the top three mobile processor vendors [103], which we refer

to as Vendor1. On the vendor’s request, we have anonymized the device and vendor names in this thesis. To develop

heuristics, we first analyze the firmware image for Vendor1’s most recent model, and then determine whether the

heuristics developed are transferable to other device models and versions. Note that all baseband firmware images
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Figure 4.2: Overview of our approach to developing heuristics for baseband firmware analysis.

that we tested are based on the ARM architecture.

Among the various cellular protocols implemented in baseband software, we choose L3 protocol messages as

our case study target. More precisely, we are interested in locating a decoder function for L3 protocol messages.

As described in §4.1.2, these L3 protocol messages are critical for the cellular core procedures. Due to the

complexity of the L3 protocol’s logic and data structures, several vulnerabilities have been discovered in their

implementations [76, 77, 78]. Therefore, we focus on the L3 protocol messages listed in Table 4.1.

Figure 4.2 illustrates an overview of our approach. Our approach is largely comprised of two components:

manual firmware analysis and a fully automated system. The firmware analysis mainly explores where the message

decoder are located. This is a manual, yet one-time task, as the decoding logic is rarely changed across device

models or versions from the same vendor. The following section describes how we developed our heuristics that

extract the L3 decoder function address from the target baseband binary.

4.3 Developing Heuristics by Uncovering Firmware’s Obscurity

This section details our approach to uncover the obscurity of baseband firmware. To address this obscurity

issue, manual analysis is required as described in §4.1.4; however, the analysis is a one-time task, and the results

can be reused for multiple baseband models or versions. This section details our analysis of Vendor1’s baseband

firmware. More precisely, we describe how we develop heuristics for analyzing file formats (§4.3.2), memory

layouts (§4.3.3), identifying function boundaries (§4.3.4), and locating the L3 decoding function (§4.3.5). Table 4.2

summarizes our heuristics.

4.3.1 Collecting Firmware Images

We use 18 firmware images from Vendor1 in this study. To obtain baseband firmware, there are primarily two

methods: memory dumps and firmware images. Previous studies [76, 77] relied on memory dumps because they

do not require complicated analyses for firmware initialization; memory dumps contain runtime memory states,

a memory layout, and global variables. However, this method requires a physical device to dump memory; thus,

it severely limits its scalability and applicability. Additionally, we discovered that in recent devices, the hidden

menu for triggering a memory dump or a hardware debug interface, such as JTAG, has been disabled. On the other

hand, there is a third-party website [108] that maintains a list of firmware images organized by product model and

version. As a result, we chose to utilize a third-party website [108]. We selected 18 firmware images for the latest

flagship models from various device models and versions, as listed in Table 4.3.

To begin, we analyzed a single image namely the most recent version of the most recent model (Model A
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Table 4.2: Summary of heuristics for scalable firmware structure analysis of baseband.

Step Challenges Heuristics

1 File format analysis
Single packed firmware file Parse the file name and extract the baseband firmware
Unknown firmware format Analyze 4-byte integers in the header and extract segments

2 Memory layout analysis Invalid memory references Emulate the scatter-loading procedure

3 Function identification
Numerous indirect function calls Build and scan signatures for function prologues
Co-Existence of the ARM and Thumb modes Search odd-numbered pointers to Thumb-mode functions
Remaining unknown functions Leverage references to debug information

4 Detecting L3 decoders
Numerous functions (over 90K) Search keywords from each function’s debug information
Relative addresses to access debug information Compute the absolute addresses by analyzing program slices

in Table 4.3), in order to break down its obscurity and develop heuristics. Then, we systematize the heuristics and

apply them to other firmware images.

4.3.2 Heuristics for File Format Analysis

Prior to analyzing the firmware using software analysis tools, its file format should be unveiled first. As

smartphone firmware contains both Android operating system (which runs on an AP) and the baseband firmware

(which runs on a BP), we extracted the baseband firmware from the downloaded firmware file. To analyze the

baseband firmware’s structure, we leveraged our experience with IoT binary analysis. We discovered that many

IoT binaries contain a base address, size, or offset for internal segments, which are often represented as 4-byte

integers. Based on this heuristic knowledge, we developed a simple heuristic that extracts useful information from

the firmware’s header by searching for 4-byte integers. As a result, we discovered that the baseband firmware

contains a simple header containing multiple sets of the name, offset, size, and base address of each segment. Each

segment of the firmware binary has a dedicated routine; for example, we discovered that one segment contains

library functions, such as a customized memory-copy function. We extracted each segment based on the header

information. Notably, previous research has taken a similar approach [76, 77].

4.3.3 Heuristics for Memory Layout Analysis

Next, we loaded the extracted segments of baseband firmware into IDA Pro [101] using the base addresses

obtained from the file format analysis. Notably, IDA Pro is a cutting-edge binary analysis tool that automatically

applies several static binary analysis techniques to a loaded binary, including function boundary identification,

disassembly, and basic data flow analysis. Nevertheless, it was only able to identify 452 functions in our target

firmware, which is 44 MB in size; a large portion of the firmware is not analyzed.

By analyzing this issue, we discovered that the firmware’s memory layout is initialized at runtime. This

initialization is critical for the firmware analysis; otherwise, data or function pointers in the firmware would point

to invalid memory addresses, obstructing further analysis significantly. Indeed, when we opened the firmware using

IDA, we discovered that the data or function pointers in the majority of functions attempted to access data or call

functions that were located in invalid memory addresses. This has a significant impact on IDA’s auto-analysis

process, which analyzes addresses detected by pointers in order to identify additional functions.

We discovered that this invalid pointer issue is caused by scatter-loading. Notably, IDA was unable to handle

scatter-loading. Scatter-loading is an loading mechanism in the ARM architecture that reallocates an initially loaded

file into multiple memory regions at runtime. This technique is widely used in ARM-based embedded systems

because it enables the compression of data regions, thereby reducing the firmware size. When building firmware, a

component in the ARM compiler, named armlink, inserts functions for scatter-loading that initialize the firmware
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at runtime. These functions copy, decompress, or zero-initialize memory regions according to a predefined table, as

shown in Figure 4.3. As a result, if this scatter-loading is not handled, an entire binary file is loaded into a single

continuous memory region, invalidating the data and function pointers. Notably, none of the existing approaches

to binary analysis have taken this into account, although scatter-loading is a fundamental feature of ARM-based

devices.

In order to address the scatter-loading issue and create a proper memory layout, we developed heuristics that

emulate the scatter-loading process. Our heuristics, in particular, mimic the behavior of the scatter-loading functions

by copying, decompressing, and zero-initializing memory regions. Because these scatter-loading functions are

predefined by armlink in highly optimized forms, the majority of recent ARM embedded devices reuse their

implementation; thus, these functions have identifiable patterns. As a result, our heuristics detect these signatures

in a manner similar to that of IDA’s FLIRT [109].

After detecting scatter-loading functions, our heuristics analyze their cross-references to determine the

predefined scatter-loading table. This table contains information that indicates the execution sequence and

parameters of the scatter-loading functions. More specifically, the table contains a list of tuples, each of which

consists of a source address, a destination address, a size, and a scatter-loading function to be applied. Thus, our

heuristics parse each tuple and emulate the designated scatter-loading process as stated in the table.

4.3.4 Heuristics for Function Boundary Identification

Although our scatter-loading emulation initializes the memory layout, the majority of the loaded firmware

remains unknown. Identifying functions in the baseband firmware presents several difficulties. First, because the

baseband firmware is essentially a real-time operating system, it contains numerous functions indirectly called,

such as interrupt functions. As a result, IDA Pro’s auto-analysis was unable to analyze them correctly. Additionally,

baseband firmware is frequently based on the ARM architecture, which is notorious for its difficulty in disassembling.

To identify functions in firmware, one must first disassemble its byte code in advance. However, disassembly of

unknown bytes in the ARM architecture frequently yields incorrect results [110] due to the ARM architecture’s

dual instruction set support: ARM and Thumb. The ARM instruction set is the default mode, which executes

32-bit instructions; the Thumb instruction set, on the other hand, supports compact 16-bit instructions, which

helps reduce code size. Because the same bytes can be disassembled in two different ways, direct disassembling

would result in many incorrectly disassembled codes. There have been several approaches to identifying function

boundaries [46, 47, 48, 49, 50, 51]; however, the majority of approaches have not considered binaries that contain

both ARM and Thumb mode instructions. Furthermore, in the ARM architecture, switch tables can be embedded

within a code segment or even between basic blocks, thereby making them difficult to distinguish from code

instructions. Owing to these difficulties, disassembling and identifying the function boundaries of firmware binaries
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that contain both ARM and Thumb mode instructions is not straightforward.

To tackle this challenge, we developed three simple heuristics that take advantage of 1) frequently occurring

function prologues, 2) the characteristics of function pointers in the Thumb mode, and 3) any remaining debug

information from the development stage. First, we develop a heuristic that sequentially scans the firmware binary

for function prologue signatures. These prologue signatures include PUSH instructions in both ARM and Thumb

modes, including 0xe92d (i.e., PUSH.W in the Thumb mode), 0xb500 (i.e., PUSH in the Thumb mode), 0xe92d (i.e.,

PUSH in the ARM mode). Then, we search for those signatures. Here, we employ the linear-sweeping technique

that was previously demonstrated to be effective in a study on binary disassembly [48]. If a match is found, it

is analyzed in the instruction mode of the matching signature. Because the Thumb mode uses 16 bits whereas

the ARM mode uses 32 bits, our heuristic first checks the Thumb mode instructions and then the ARM mode

instructions. We discovered empirically that this approach results in fewer false positives. Additionally, in order to

minimize false positives in signature-based matching, we developed a heuristic that verifies whether the detected

candidate for a function prologue handles registers in the following manner: 1) it should push the LR register to the

stack; 2) it should not push the SP and PC registers to the stack; and 3) it should contain at least one normal register,

such as R2, R3, or R4. Using these heuristics, we were able to identify significantly more functions (≈71 times) than

the IDA Pro’s initial analysis.

After detecting function prologues, we further identify functions by analyzing function pointers in the data

section. For this, we leverage the characteristics of the Thumb mode; function pointers to Thumb mode functions

use odd-numbered addresses. In particular, the least significant bit of the pointer value is always 1. As the majority

of data is aligned with an even address, an odd-numbered address that points to a code section is highly likely a

Thumb mode function pointer. Therefore, we can identify ≈2,500 more functions that are indirectly invoked via

such pointers.

Lastly, we make use of any remaining debug information from the development stage, such as a logging

message. Notably, IoT device developers often include debug information in their production binaries [111, 76, 77].

Note that this debug information is different from that added by compilers via the -g option, which is removed when

a binary is stripped. Our intuition is that if an instruction candidate has an operand pointing to debug information,

it should belong to a function; thus, we can eventually identify the function referencing the debug information.

We discovered through manual analysis that the debug information in our target firmware has a distinct structure.

Specifically, the structure, which starts with the magic value DBT, contains a debug message, as well as the file path

and the line number of the file to which it refers. Therefore, we developed another heuristic that searches for all

debug information in a baseband binary using the magic value (i.e., DBT) and then analyzes function boundaries.

By employing the three aforementioned heuristics, we were able to identify approximately 80 times as many

functions as the IDA Pro’s initial analysis. After identifying the functions, we then re-run IDA Pro’s auto-analysis.

If a newly identified function calls other functions, IDA Pro’s auto-analysis can be used to recursively identify them.

Consequently, we were able to identify over 200 times the number of functions (≈90K functions) identified in the

initial analysis.

4.3.5 Heuristics for Detecting Layer 3 Decoder Functions

Our ultimate goal in performing firmware analysis is to locate our target functions (i.e., L3 protocol decoder

functions) and further assess the security of their message processing logic. To identify the decoders, we utilize

debug information from the development stage, as described in function boundary identification (§4.3.4). We

chose this approach over other binary analysis techniques because debug information is commonly used in practice

to locate a particular function in a stripped binary when analyzing embedded devices [111, 76, 77]. Baseband
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firmware is stripped and extremely large (over 30MB) containing a large number of functions (over 90K), making

it extremely difficult to discover a specific function. Therefore, we use debug information, particularly messages

for logging, to reduce the analysis effort.

We first developed a heuristic that searches all debug information in the baseband binary. As described

in §4.3.4, the debug information has a particular structure that starts with a magic value (i.e., DBT); thus, we scanned

this magic value from the baseband binary. Then, we analyzed functions that contain references to the relevant

debug information. Specifically, the debug information contains a message along with the path and line number of

the source file. As functions within the same layer or library may share a file path, we can classify each function

based according to the source file path in its debug information. Then, we looked for L3-related functions in debug

messages and file paths using keywords, such as L3, SS, EMM, or NAS. This approach is advantageous for searching

for target functions among a large amount of debug information; approximately 100K cases exist.

Not all functions, however, have direct access to their debug information. During our analysis, we discovered

several functions that make use of relative addresses to access debug information. These functions optimize the

address of their debug information by computing it at runtime using a base address. To address this, we developed

another heuristic that performs lightweight program slice analysis to correctly match debug information within each

function. By following the instructions in a target function, this analysis computes the relative address of debug

information and obtains its absolute address. After debug information is correctly mapped in each function, we

search for functions related to message decoding using keywords such as decode or codec. Consequently, we were

able to identify a decoder function that decodes all L3 protocol messages. Because L3 protocol messages follow a

standardized structure [102], they can be handled by a single decoder. After detecting the decoder function, we

could conduct further security analysis.

4.4 Evaluation

To evaluate the effectiveness of developed heuristics, we apply them to 18 baseband firmware images that

we collected from a third-party website [108], as described in §4.3.1. As of June 2020, we downloaded the latest

and oldest firmware images of Vendor1, which is one of the top three baseband chipset vendors. We chose the

most recent and oldest images because they may exhibit the greatest differences. The most recent images were

created within two months, while the oldest were created over four years. Therefore, analyzing them effectively

demonstrates the applicability of our heuristics across various baseband versions and models. We ran all experiments

on a server equipped with Intel Core i7-6700K running at 4.00 GHz, 64 GB DDR4 RAM, and a 2 TB SSD running

Windows 10.

To implement the heuristics, we wrote a total of 1,303 LoC in Python. We used APIs in IDA Pro v7.4 [101]

for systematizing the heuristics. We released our source code irrelevant to the vendor to aid in further research.1

The following sections evaluate our heuristics’ capability for identifying function boundaries and detecting target

functions (i.e., L3 decoder function). Then, we describe how we discovered 9 bugs from the L3 decoder.

4.4.1 Effectiveness of Heuristics in Baseband Firmware Analysis

To evaluate the effectiveness of the developed heuristics, we test the following questions:

• Q1: How do well-systematized heuristics perform better than the existing framework at identifying function

boundaries?

• Q2: Are well-systematized heuristics effective at detecting target functions?

1https://github.com/SysSec-KAIST/BaseSpec
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Table 4.3: Analysis results of 18 baseband firmware images from Vendor1.

# of Funcs Identified by IDA Pro

Dataset Model Build Date Size (MB) w/o Heuristics w/ Heuristics # of Detected Debug Info. L3 Decoder Address

L
at

es
tV

er
si

on

Model A May/2020 44 452 91043 127266 0x4113ed5a
Model B May/2020 44 3601 89989 126975 0x4117e646
Model C May/2020 43.8 446 89893 126926 0x4114ca72
Model D Jun/2020 41.3 409 68279 96518 0x40e3f5aa
Model E Jun/2020 41.4 409 68621 97671 0x40e3ffca
Model F Apr/2020 41.7 417 68080 105733 0x412b6022
Model G Apr/2020 41.2 417 67392 104914 0x41226da6
Model H Apr/2020 37.4 388 61019 109290 0x4105bbe0
Model I Apr/2020 37 386 66663 143473 0x4100b0b4

O
ld

es
tV

er
si

on

Model A Apr/2019 43.4 457 89789 125284 0x411c03aa
Model B Feb/2019 43.3 450 88209 125582 0x4127b8ca
Model C Feb/2019 43.1 450 80268 110047 0x4124810e
Model D Mar/2018 41.2 402 67749 95796 0x40b469be
Model E Mar/2018 41.2 402 66866 94170 0x40b473b6
Model F Apr/2017 41.3 441 78709 127517 0x41324ae6
Model G Apr/2017 40.8 443 63844 100885 0x41296ede
Model H Apr/2016 37.1 376 61611 112231 0x410704e8
Model I Apr/2016 36.8 377 61714 112494 0x41019c00

We anonymized the model names upon the request of the vendor. The names are listed alphabetically ascending from the most recent.

• Q3: Is it possible to transfer the heuristics learned from a single firmware image to other device models and

versions?

In this experiment, we compare the number of functions identified by naive IDA Pro to the number identified

by IDA Pro equipped with our heuristics. The results are shown in Table 4.3. As illustrated in the fifth and sixth

columns of the table, our heuristics significantly improved the IDA’s performance in identifying functions, thereby

supporting both Q1 and Q3. The average number of functions identified by naive IDA Pro (i.e., without heuristics)

was 595, whereas the average number of functions identified by IDA Pro with our heuristics was 73,874, or ≈124

times more functions. This result is largely due to our heuristics, which demonstrate their efficacy. It should be

noted, however, that IDA Pro’s auto-analysis is extremely beneficial. After heuristics identified new functions,

IDA Pro continued its auto-analysis on each function, particularly for the code references in it, and recursively

discovered more functions.

The systematized heuristics can be applied to firmware for other baseband models and versions without

requiring additional analysis. In practice, IDA Pro equipped with the heuristics successfully analyzed the remaining

latest models and versions listed in Table 4.3, thereby confirming Q3. The average time spent on the firmware

analysis, including the IDA’s auto-analysis, was approximately 2600 s.

After identifying function boundaries, our heuristics detected the L3 protocol decoder in each baseband binary.

Recall that each baseband binary has a single universal decoder for all L3 protocols (§4.3.5). The last column

in Table 4.3 represents the address of the detected L3 protocol decoder. This result demonstrates the capability and

transferability of the heuristics for detecting the L3 decoder, thereby supporting Q2 and Q3, respectively.

4.4.2 Discovering Bugs from L3 Decoders

After detecting the L3 decoders, we manually analyzed the security of their message processing logic. The

baseband typically has two distinct logics for processing received messages. When an L3 protocol message is

passed to the decoder function, the message is parsed and the parsed data is passed to the corresponding handler

function for processing. Therefore, bugs may exist in both decoder and the handler functions.

Figure 4.4 depicts a high-level overview of the message processing logic and the implications of various
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Figure 4.4: Procedure for processing L3 protocol messages. The colored box denotes the focus of our heuristics.

message types. According to their contents, input messages can be classified as benign, unknown, or invalid. We

refer to messages that are not defined in the specification documents [102, 112, 113, 114, 115] as unknown. We

refer to messages with a length field that differs from the one specified in the documents as invalid. Note that L3

protocol messages contain multiple elements, referred to as information elements (IEs). Each of these elements

may include the following three fields: type, length, and value. The length field indicates the size of the value field

in bytes. The length field may vary within a specified range in the documents.

Unknown and invalid messages should be discarded by the decoder function during its validity check routine.

However, if developers implement such routines incorrectly or insufficiently, those messages are not discarded,

resulting in functional bugs or memory-related vulnerabilities. For instance, if the decoder does not check the

length field of an input message, this may result in memory corruption bugs in the handler function, such as a buffer

overflow. An additional check may be included in a handler function. However, Analyzing such a routine in handler

functions to determine the implications of unknown or invalid messages is not trivial because handler functions

manage complex semantics, such as session/mobility management or call control. As a result, we rely heavily

on manual analysis to understand the implications. It is worth noting, however, that our heuristics for detecting

the decoder function significantly reduced the analysis effort; we analyzed only the functions associated with the

decoder function among numerous (over 90K) functions.

To confirm functional bugs, we compare the baseband implementation to the cellular specification. We chose

Release 15 over the other releases of the specification because its has a freeze date of March 22, 2019. That

is, the specification’s development was complete and remained stable [116]. The next release, Release 16, has

a freeze date of July 2020; thus, it is highly unlikely to be implemented in our target firmware images. Using

these specification documents, we examined the message processing logic implemented in the baseband firmware.

Consequently, we discovered several inconsistencies that break the baseband’s compliance with the specification.

We further investigated those inconsistencies and discovered 78 (5 unique) functional bugs. During this analysis,

we also discovered 56 (4 unique) memory-related vulnerabilities, which could result in a denial of service or even

remote code execution. Notably, these nine distinct bugs affect 33 distinct messages. We refer to these bugs from

B1 to B9 in Table 4.4. Except for B7, all other bugs are newly discovered (i.e., 0-days). We responsibly disclosed

all bugs to the manufacturer (i.e., Vendor1).

By comparing the bug discovery results of each firmware image, we discovered the following interesting

points. When we compared the latest images with the oldest, we noticed that the majority of the discovered bugs

had existed in the past. For instance, B8 and B9 are long-lived vulnerabilities from the oldest firmware in our

dataset. It is highly likely that earlier models also have these vulnerabilities. Moreover, certain device models

exhibit the same vulnerabilities. For example, Models D, E, F, and G all produce identical results, while Models

H and I produce identical results; compare the results in the latest version row to those in the oldest version row.
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Table 4.4: Bugs discovered from our manual analysis.

Functional† Memory-Related

Dataset Model Build Date B1 B2 B3 B4 B5 B6‡ B7 B8‡ B9

L
at

es
tV

er
si

on
Model A May/2020 X X X X X X · X X
Model B May/2020 X X X X X X · X X
Model C May/2020 X X X X X X · X X
Model D Jun/2020 X X X X X X · X X
Model E Jun/2020 X X X X X X · X X
Model F Apr/2020 X X X X X X · X X
Model G Apr/2020 X X X X X X · X X
Model H Apr/2020 · X X · · · · X X
Model I Apr/2020 · X X · · · · X X

O
ld

es
tV

er
si

on

Model A Apr/2019 X X X X X X · X X
Model B Feb/2019 X X X X X X · X X
Model C Feb/2019 X X X X X X · X X
Model D Mar/2018 X X X X X X X X X
Model E Mar/2018 X X X X X X X X X
Model F Apr/2017 X X X X X X X X X
Model G Apr/2017 X X X X X X X X X
Model H Apr/2016 · X X · · · X X X
Model I Apr/2016 · X X · · · X X X

We anonymized the model names upon the request of the vendor. The names are listed alphabet-

ically ascending from the most recent.
† These have been confirmed to be non-compliant to the Release 15 specification.
‡ These are 0-days that allow for remote code execution.

Additionally, Models C and B produce identical results. This result implies that the manufacturer’s codebase for

those groups of device models may be identical or similar.

Furthermore, because the build dates of the oldest images span four years, we noticed at least two security

changes have been made to the baseband implementation. This is because B6 appeared for the first time between

April 2016 and April 2017, and B7 vanished between March 2018 and February 2018. By analyzing them, we

determined that B6 was introduced as a result of changes to GMM handlers, and that B7 was removed as a result of

the addition of security checks to EMM handlers. Meanwhile, Models H and I remained unchanged in their most

recent versions, with the exception of B7. Due to the one-year build date difference between these two models, they

were not affected by B6, a newly introduced bug from Model G.

4.5 Discussion

While the heuristics developed in this study are effective and promising, there are several areas for improvement.

First, we focused on the cellular L3 protocol messages. Other cellular protocols, however, can be analyzed as well.

By design, each message structure used in cellular protocols should be written in a consistent manner in protocol

specifications [102]. Such a systematic structure implies that other protocols’ decoder and message processing

logic may be similar to that of the L3 protocols. Therefore, we believe that similar heuristics can be applied to

other protocols, though adjusting the heuristics may require considerable effort.

Automating the discovery of bugs is another critical and promising area of research. We manually analyzed

the message processing logic from the detected L3 decoder function to identify bugs. To reduce such manual

analysis effort, one could employ other promising analysis techniques such as fuzzing [94, 95, 44] or hybrid

analysis [96, 97]. Notably, dynamic analysis techniques can be combined with recent emulation-based approaches

on baseband [78, 14, 15]. We reserve such promising improvements for future work.

Lastly, discovering other types of bugs, such as logical or stateful bugs, is another challenging research topic
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in this field. It is well established that discovering service-related bugs, such as bypassing security channels [79], is

extremely difficult due to the baseband’s massive code for numerous cellular protocols. Moreover, these protocols

have convoluted states, necessitating the consideration of various stateful information in the analysis. It is is also not

trivial to construct a reference for logical bugs from the specifications [117, 118, 119, 120, 121]. To overcome these

challenges, one can employ conformance testing [122, 123, 124] or natural language processing techniques [125]

to analyze stateful information from the specification. By introducing our heuristics as a starting point for future

research in this field, we encourage further investigation.

4.6 Related work

Several studies have focused on assessing the security of cellular network protocols and baseband software.

In the early stage, researchers conducted dynamic analysis on a physical device via the over-the-air interface

without directly analyzing the baseband firmware. They leveraged open-source cellular stacks [126, 127, 128, 129]

and low-cost software-defined radios (SDRs) [130, 131] to access the over-the-air interface. By sending crafted

messages to target devices, they analyzed the L3 protocols related to SMS or cell broadcast messages [72, 73, 74],

service quality [82, 132], and private information [133, 83]. Recent approaches [134, 81, 80, 79] have attempted to

reduce manual efforts involved in dynamic analysis by leveraging abnormal messages. Several other studies took a

similar approach, focusing on various layers, protocols, or domains of cellular networks, such as VoLTE [135],

SS7/Diameter [136], uplink messages [79, 137], or lower layers [138, 139, 140]. These approaches are advantageous

because they do not require an understanding of baseband firmware. They do, however, require physical devices

and a thorough understanding of cellular networks and specifications. Additionally, they require a testbed that

operates the same as the real environment. Therefore, testing each implemented message across multiple devices is

nearly infeasible.

On the other hand, several studies [75, 76, 77] have focused on analyzing baseband firmware for L3 protocols,

such as the one we are analyzing. Weinmann [75] showed a practical approach for analyzing memory-related

bugs in GSM protocol stacks in baseband using the JTAG debug interface. Golde et al. [76] and Cama [77] used

memory dumps to analyze recent Exynos firmware. Notably, they discovered RCE 0-days and were rewarded at

Mobile Pwn2Own. While these approaches provide promising insights into baseband analysis, they are limited by

the fact that they require physical devices to dump memory. To address this limitation, Maier et al. [78] recently

proposed an emulation-based analysis of the RRC/EMM protocols. They manually analyzed MediaTek firmware

and hooked all related functions to emulate functions related to those protocols. They then ran a famous fuzzer,

AFL++ [141], to analyze vulnerabilities. These approaches, however, suffer from the fundamental problem of

baseband firmware, namely, obscurity and complexity. We address these issues by thoroughly analyzing baseband

firmware and developing heuristics that can be transferable to other baseband models or versions. Consequently, by

systematizing heuristics, we were able to quickly analyze 18 baseband firmware images (≈2,500 s).

4.7 Conclusion

While security analysis techniques have advanced significantly, they cannot be applied directly to complex IoT

devices, such as the smartphone baseband, owing to their obscurity and complexity. Several promising approaches

to baseband analysis have been proposed [72, 73, 74, 75, 76, 77, 78], but these approaches are still too early to

address the fundamental problem of firmware analysis.

To address this issue, we conducted the first systematic analysis of cellular baseband. During the analysis, we

discovered that simple heuristics can satisfy the minimum requirements for firmware analysis when it comes to
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assessing its security. We developed heuristics that identify function boundaries and locate target functions. These

heuristics significantly improved the performance of the leading binary analysis framework, IDA Pro, in identifying

function boundaries, resulting in the discovery of 78 functional bugs and 56 memory-related vulnerabilities,

including critical RCE 0-days.

We believe that accumulating heuristic knowledge is the last-mile effort towards resolving the fundamental

issues in the firmware analysis of complex IoT devices. If such heuristics are transferrable to a variety of device

models and versions, they can enable scalable firmware analysis, as demonstrated by our successful analysis of

18 smartphone baseband firmware images. In this regard, we argue that systematizing and accumulating heuristic

workarounds will eventually facilitate scalable security analysis of the IoT ecosystem.
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Chapter 5. Systematic Study of Binary Code Similarity Analysis

We have demonstrated in the previous two chapters that simple heuristics are effective and necessary for

successful firmware emulation and structure analysis of IoT devices, hence enabling scalable security testing. We

have discovered that, despite the diversity of the IoT ecosystem, many devices share a similar codebase, and thereby,

heuristics developed for one device are transferrable across various device versions or families. Meanwhile, such

code sharing is a serious issue in the IoT ecosystem. Numerous IoT devices share similar/identical vulnerabilities

and are continually exploited by them [7, 8, 9, 10]. To rapidly assess such vulnerabilities and secure the IoT

ecosystem, we can also leverage binary code similarity, a technique referred to as known vulnerability analysis.

Prior to delving into the development of known vulnerability analysis techniques, we conducted a comprehensive

investigation on its fundamental, BCSA, which is detailed in this chapter.

5.1 Motivation and Overview

Programmers reuse existing code to build new software. It is a common practice for them to find the source

code from another project and repurpose that code for their own needs [142]. Inexperienced developers even copy

and paste code samples from the Internet to ease the development process. This trend has deep implications for

software security and privacy. When a programmer takes a copy of a buggy function from an existing project, the

bug will remain intact even after the original developer has fixed it. Furthermore, if a developer in a commercial

software company inadvertently uses a library code from an open-source project, the company can be accused of

violating an open-source license such as the GNU General Public License (GPL) [143].

Unfortunately, however, detecting such problems from binary code using a similarity analysis is not straightfor-

ward, particularly when the source code is not available. This is because binary code lacks high-level abstractions,

such as data types and functions. For example, it is not obvious to determine from binary code, whether a memory

cell represents an integer, a string, or another data type. Moreover, identifying precise function boundaries is

radically challenging in the first place [47, 46].

Therefore, measuring the similarity between binaries has been an essential research topic in many areas

such as malware detection [65, 66], plagiarism detection [67, 68], authorship identification [69], and vulnerability

discovery [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64].

However, despite the surging research interest in binary code similarity analysis (BCSA), we found that it is

still significantly challenging to conduct new research on this field for several reasons. First, most of the methods

focus only on the end results without considering the precise reasoning behind their approaches. For instance, during

our literature study in the field, we observed that there is a prominent research trend in applying BCSA techniques to

cross-architecture and cross-compiler binaries of the same program [62, 55, 59, 58, 54, 70, 56]. Those approaches

aim to measure the similarity between two or more seemingly distinct binaries generated from different compilers

targeting different instruction sets. To achieve this, multiple approaches have devised complex analyses based on

machine learning to extract the semantics of the binaries, assuming that their semantics should not change across

compilers or target architectures. However, none of the existing approaches clearly justifies the necessity of such

complex semantics-based analyses. One may imagine that a compiler may generate structurally similar binaries for

different architectures, even though they are syntactically different. Do compilers and architectures really matter

for BCSA in this regard? Unfortunately, it is difficult to answer this question as most of the existing approaches

leverage uninterpretable machine learning techniques [56, 71, 55, 144, 62, 145, 63, 64, 146, 147, 148, 149].
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Further, it is not even clear why a BCSA algorithm works only on some benchmarks and not on others.

Second, every existing paper on BCSA that we studied utilizes its own benchmark to evaluate the proposed

technique, which makes it difficult to compare the approaches with one another. Moreover, reproducing the previous

results is often infeasible because most researchers reveal neither their source code nor their dataset. Only 10 of the

43 papers that we studied fully released their source code and only two of them opened their entire dataset. Finally,

researchers in this field do not use unified terminologies and often miss out on critical citations that appeared in

top-tier venues of other fields. Some of them even mistakenly use the same technique without citing the previous

literature properly. These observations motivate one of our research goals, which is to summarize and review widely

adopted techniques in this field, particularly in terms of generating features.

To address these problems, we take a step back from the mainstream and contemplate fundamental research

questions for BCSA. As the first step, we precisely define the terminologies and categorize the features used in the

previous literature to unify terminologies and build knowledge bases for BCSA. We then construct a comprehensive

and reproducible benchmark for BCSA to help researchers extend and evaluate their approaches easily. Lastly, we

design an interpretable feature engineering model and conduct a series of experiments to investigate the influence

of compilers, their options, and their target architectures on the syntactic and structural features of the resulting

binaries.

Our benchmark, which we refer to as BINKIT, encompasses various existing benchmarks. It is generated

by using major compiler options and targets, which include 8 architectures, 9 different compilers, 5 optimization

levels, as well as various other compiler flags. BINKIT contains 243,128 distinct binaries and 36,256,322 functions

built for 1,352 different combinations of compiler options, on 51 real-world software packages. We also provide

an automated script that helps extend BINKIT to handle different architectures or compiler versions. We believe

this is critical because it is not easy to modify or extend previous benchmarks, despite us having their source

codes. Cross-compiling software packages using various compiler options is challenging because of numerous

environmental issues. To the best of our knowledge, BINKIT is the first reproducible and extensible benchmark for

BCSA.

With our benchmark, we perform a series of rigorous studies on how the way of compilation can affect the

resulting binaries in terms of their syntactic and structural shapes. To this end, we design a simple interpretable

BCSA model, which essentially computes relative differences between BCSA feature values. We then build a BCSA

tool that we call TIKNIB, which employs our interpretable model. With TIKNIB, we found several misconceptions

in the field of BCSA as well as novel insights for future research as follows.

First, the current research trend in BCSA is founded on a rather exaggerated assumption: binaries are

radically different across architectures, compiler types, or compiler versions. However, our study shows that this

is not necessarily the case. For example, we demonstrate that simple numeric features, such as the number of

incoming/outgoing calls in a function, are largely similar between binaries compiled across different architectures.

We also present other elementary features that are robust (i.e., have a small effect on the performance of BCSA)

across compiler types, compiler versions, and even intra-procedural obfuscation. With these findings, we show that

TIKNIB with those simple features can achieve comparable accuracy to that of the state-of-the-art BCSA tools,

such as VulSeeker, which relies on a complex deep learning-based model.

Second, most researchers focus on vectorizing features from binaries, but not on recovering lost information

during the compilation, such as variable types. However, our experimental results suggest that focusing on the latter

can be highly effective for BCSA. Specifically, we show that TIKNIB with recovered type information achieves an

accuracy of over 99% on all our benchmarks, which was indeed the best result compared to all the existing tools we

studied. This result highlights that recovering type information from binaries can be as critical as developing a

novel machine learning algorithm for BCSA.
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Finally, the interpretability of a tool helps not only deeply understand BCSA results but also advance the field.

For example, we present several practical issues in the underlying binary analysis tool, i.e., IDA Pro, which is used

by TIKNIB, and discuss how such errors can affect the performance of BCSA. Since our benchmark has the ground

truth and our tool employs an interpretable model, we were able to easily pinpoint those fundamental issues, which

will eventually benefit binary analysis tools and the entire field of binary analysis.

In summary, our contributions of this study are as follows:

• We study the features and benchmarks used in previous research on BCSA and clarify less-explored research

questions in this field.

• We introduce BINKIT,1 the first reproducible and expandable BCSA benchmark. It contains 243,128 binaries

and 36,256,322 functions compiled for 1,352 distinct combinations of compilers, compiler options, and target

architectures.

• We develop a BCSA tool, TIKNIB,2 which employs a simple interpretable model. We demonstrate that TIKNIB

can achieve an accuracy comparable to that of a state-of-the-art deep learning-based tool. We believe this will

serve as a baseline to evaluate future research in this field.

• We investigate the efficacy of basic BCSA features with TIKNIB on our benchmark and unveil several miscon-

ceptions and novel insights.

• We make our source code, benchmark, and experimental data publicly available to support open science.

In the following, we start by describing the fundamentals of BCSA.

5.2 Binary Code Similarity Analysis

Binary Code Similarity Analysis (BCSA) is the process of identifying whether two given code snippets have

similar semantics. Typically, it takes in two code snippets as input and returns a similarity score ranging from 0 to

1, where 0 indicates the two snippets are completely different, and 1 means that they are equivalent. The input code

snippet can be a function [150, 54, 151, 62, 59, 152, 144, 64], or even an entire binary image [67, 68]. Additionally,

the actual comparison can be based on functions, even if the inputs are entire binary images [71, 58, 153, 55, 154,

155, 56].

At a high level, BCSA performs four major steps as described below:

• (S1) Syntactic Analysis: Given a binary code snippet, one parses the code to obtain a disassembly or an

Abstract Syntax Tree (AST) of the code, which is often referred to as an Intermediate Representation (IR) [156].

This step corresponds to the syntax analysis in traditional compiler theory, where source code is parsed down

to an AST. If the input code is an entire binary file, we first parse it based on its file format and splits it into

sections.

• (S2) Structural Analysis This step analyzes and recovers the control structures inherent in the given binary

code, which is not readily available from the syntactic analysis phase (S1). In particular, this step involves

recovering the control-flow graphs (CFGs) and call graphs (CGs) in the binary code [157, 158]. Once the

control-structural information is obtained, one can use any attribute of these control structures as a feature. We

distinguish this step from semantic analysis (S3) because binary analysis frameworks typically provide CFGs

and CGs for free; the analysts do not have to write a complex semantic analyzer.

• (S3) Semantic Analysis Using the control-structural information obtained from S2, one can perform traditional

program analyses, such as data-flow analysis and symbolic analysis, on the binary to figure out the underlying
1https://github.com/SoftSec-KAIST/binkit
2https://github.com/SoftSec-KAIST/tiknib
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Figure 5.1: Typical workflow of binary code similarity analysis (BCSA).

semantics. In this step, one can generate features that represent sophisticated program semantics, such as how

register values flow into various program points. One can also enhance the features gathered from S1–S2 along

with the semantic information.

• (S4) Vectorization and Comparison The final step is to vectorize all the information gathered from S1–S3 to

compute the similarity between the binaries. This step essentially results in a similarity score between 0 and 1.

Figure 5.1 depicts the four-step process. The first three steps determine the inputs to the comparison step

(S4), which are often referred to as features. Some of the first three steps can be skipped depending on the

underlying features being used. The actual comparison methodology in S4 can also vary depending on the BCSA

technique. For example, one may compute the Jaccard distance [159] between feature sets, calculate the graph edit

distance [160] between CFGs, or even leverage deep learning algorithms [161, 162]. However, as the success of

any comparison algorithm significantly depends on the chosen features, this chapter focuses on features used in

previous studies rather than the comparison methodologies.

In this section, we first describe the features used in the previous papers and their underlying assumptions

(§5.2.1). We then discuss the benchmarks used in those papers and point out their problems (§5.2.2). Lastly, we

present several research questions identified during our study (§5.2.3).

Our study focuses on recent papers that appeared in top-tier venues to keep the scope manageable. There are,

of course, plentiful research papers in this field, all of which are invaluable. Nevertheless, our focus here is not

to conduct a complete survey on them but to introduce a prominent trend and the underlying research questions

in this field, as well as answer those questions. Because of the space limit, we excluded papers [163, 164, 165,

166, 167, 168, 169, 170, 171, 172, 173] that were published before 2014 and those not regarding top-tier venues, or

binary diffing tools [174, 175, 176] used in industry. Additionally, we excluded papers that aim to address a specific

research problem such as malware detection, library function identification, or patch identification. Although our

study focuses only on recent papers, we found that the features we studied in this thesis are indeed general enough;

they cover most of the features used in the older papers.
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5.2.1 Features Used in Prior Works

We categorize features into two groups based on when they are generated during BCSA. Particularly, we refer

to features obtained before and after the semantic analysis step (S3) as presemantic features and semantic features,

respectively. Presemantic features can be derived from either S1 or S2, and semantic features can be derived from

S3. We summarize both features used in the recent literature in Table 5.1.

(1) Presemantic Features

Presemantic features denote direct or indirect outcomes of the syntactic (S1) and structural (S2) analyses.

Therefore, we refer to any attribute of binary code, which can be derived without a semantic analysis, as a

presemantic feature. We can further categorize presemantic features used in previous literature based on whether

the feature represents a number or not. We refer to features representing a number as numeric presemantic features,

and others as non-numeric presemantic features. The first half of Table 5.1 summarizes them.

(a) Numeric Presemantic Features

Counting the occurrences of a particular property of a program is common in BCSA as such numbers can

be directly used as a numeric vector in the similarity comparison step (S4). We categorize numeric presemantic

features into three groups based on the granularity of the information required for extracting them.

First, many researchers extract numeric features from each basic block of a target code snippet. One may

measure the frequency of raw opcodes (mnemonics) [191, 60] or grouped instructions based on their functionality

(e.g., arithmetic, logical, or control transfer) [54, 148]. This numeric form can also be post-processed through

machine learning [71, 55, 56, 148], as we further discuss in §5.2.1.

Similarly, numeric features can be extracted from a CFG as well. CFG-level numeric features can also reflect

structural information that underlies a CFG. For example, a function can be encoded into a numeric vector, which

consists of the number of nodes (i.e., basic blocks) and edges (i.e., control flow) as well as grouped instructions

in its CFG [54, 181, 148]. One may extend such numeric vectors by adding extra features such as the number

of successive nodes or the betweenness centrality of a CFG [71, 55, 148]. The concept of 3D-CFG [192], which

places each node in a CFG into a 3D space, can be utilized as well. Here, the distances among the centroids of two

3D-CFGs can represent their similarity score [61]. Other numeric features can be the graph energy, skewness, or

cyclomatic complexity of a CFG [191, 60, 148]. Even loops in a CFG can be converted into numeric features by

counting the number of loop headers and tails as well as the number of forward/backward edges [185].

Finally, previous approaches utilize numeric features obtained from CGs. We refer to them as a CG-level

numeric feature. Most of these approaches measure the number of callers and callees in a CG [193, 54, 71, 191,

60, 185, 62, 148]. When extracting these features, one can selectively apply an inter-procedural analysis using

the ratio of the in-/out- degrees of the internal callees in the same binary and the external callees of imported

libraries [58, 61, 63, 148]. This is similar to the coupling concept [194], which analyzes the inter-dependence

between software modules. The extracted features can also be post-processed using machine learning [62].

(b) Non-Numeric Presemantic Features

Program properties can also be directly used as a feature. The most straightforward approach involves directly

comparing the raw bytes of binaries [66, 195, 173]. However, people tend to not consider this approach because

byte-level matching is not robust compared to simple code modifications. For example, anti-malware applications

typically make use of manually written signatures using regular expressions to capture similar, but syntactically

different malware instances [196]. Recent approaches have attempted to extract semantic meanings from raw binary

code utilizing a deep neural network (DNN) to build a feature vector representation [62, 145].
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Another straightforward approach involves considering the opcodes and operands of assembly instructions or

their intermediate representations [197, 61]. Researchers often normalize operands [154, 177, 152] because their

actual values can significantly vary across different compiler options. Recent approaches [182, 190] have also

applied re-optimization techniques [198] for the same reason. To compute a similarity score, one can measure the

number of matched elements or the Jaccard distance [58] between matched groups, within a comparison unit such

as a sliding window [178], basic block [154], or tracelet [177]. Here, a tracelet denotes a series of basic blocks.

Although these approaches take different comparison units, one may adjust their results to compare two procedures,

or to find the longest common subsequence [154, 152] within procedures. If one converts assembly instructions to a

static single assignment (SSA) form, s/he can compute the tree edit distance between the SSA expression trees as a

similarity score [53]. Recent approaches have proposed applying popular techniques in natural language processing

(NLP) to represent an assembly instruction or a basic block as an embedded vector, reflecting their underlying

semantics [144, 63, 64, 146, 147, 149].

Finally, some features can be directly extracted from functions. Such features may include the names of

imported functions, and the intersection of two inputs can show their similarity [181, 62]. Note that these features

can collaborate with other features as well.

(2) Semantic Features

We call features that we can obtain from the semantic analysis phase (S3) semantic features. To obtain

semantic features, a complex analysis, such as symbolic execution [67, 68, 58, 183, 61], dynamic evaluation of

code snippets [68, 150, 153, 155, 183, 151, 187, 186, 184], or machine learning-based embedding [56, 71, 55, 144,

62, 145, 63, 64, 146, 147, 148, 149] is necessary. There are mainly seven distinct semantic features used in the

previous literature, as listed in Table 5.1. It is common to use multiple semantic features together or combine them

with presemantic features.

First, one straightforward method to represent the semantics of a given code snippet is to use symbolic

constraints. The symbolic constraints could express the output variables or states of a basic block [67], a program

slice [179, 59, 183], or a path [68, 199, 200]. Therefore, after extracting the symbolic constraints from a target

comparison unit, one can compare them using an SMT solver.

Second, one may represent code semantics using I/O samples [68, 58, 61, 70]. The key intuition here is that

two identical code snippets produce consistent I/O samples, and directly comparing them would be time-efficient.

One can generate I/O samples by providing random inputs [68, 70] to a code snippet, or by applying an SMT solver

to the symbolic constraints of the code snippet [58, 61]. One can also adopt inter-procedural analysis to precisely

model I/O samples if the target code includes a function call [58, 61].

Third, the runtime behavior of a code snippet can directly express its semantics, as presented by traditional

malware analysis [201]. By executing two target functions with the same execution environment, one can

directly compare the executed instruction sequences [184] or visited CFG edges of the target functions [186]. For

comparison, one may focus on specific behaviors observed during the execution [150, 151, 155, 61, 187, 202, 148]:

the read/write values of stack and heap memory, return values from function calls, and invoked system/library

function calls during the executions. To extract such features, one may adopt fuzzing [151, 203], or an emulation-

based approach [187]. Moreover, one can further check the call names, parameters, or call sequences for system

calls [153, 155, 187, 183, 61].

The next category is to manually annotate the high-level semantics of a program or function. One may

categorize library functions by their high-level functionality, such as whether the function manipulates strings or

whether it handles heap memory [58, 61, 181]. Annotating cryptographic functions in a target code snippet [204] is

also helpful because its complex operations hinder analyzing the symbolic constraints or behavior of the code [183].
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The fifth category is extracting features from a program slice [205] because they can represent its data-flow

semantics in an abstract form. Specifically, one can slice a program into a set of strands [182, 57]. Here, a strand is

a series of instructions within the same data flow, which can be obtained from backward slicing. Next, these strands

can be canonicalized, normalized, or re-optimized for precise comparison [182, 57]. Additionally, one may hash

strands for quick comparison [188] or extract symbolic constraints from the strands [179]. One may also extract

features from a program dependence graph (PDG) [206], which is essentially a combination of a data-flow graph

and CFG, to represent convoluted semantics of the target code, including its structural information [56].

Recovered program variables can also be semantic features. For example, one can compare the similarity of

string literals referenced in code snippets [54, 71, 55, 181, 191, 60, 185, 148]. One can also utilize the size of local

variables, function parameters, or the return type of functions [54, 181, 148, 189]. One can further check registers

or local variables that store the return values of functions [61].

Recently, several approaches have been utilizing embedding vectors, adopting various machine learning

techniques. After building an attributed control-flow graph (ACFG) [71], which is a CFG containing numeric

presemantic features in its basic blocks, one can apply spectral clustering [207] to group multiple ACFGs or popular

encoding methods [208, 209, 210] to embed them into a vector [55]. The same technique can also be applied

to PDGs [56]. Meanwhile, recent NLP techniques, such as Word2Vec [211] or convolutional neural network

models [212], can be utilized for embedding raw bytes or assembly instructions into numeric vectors [144, 62, 145,

63, 64, 146, 147, 149]. For this embedding, one can also consider a higher-level granularity [144, 63] by applying

other NLP techniques, such as sentence embedding [213] or paragraph embedding [214]. Note that one may apply

machine learning to compare embedding vectors rather than generating them [180, 188], and Table 5.1 does not

mark them to use embedded vectors.

(3) Key Assumptions from the Past Research

During our literature study, we found that most of the approaches highly rely on semantic features extracted

in (S3), assuming that they should not change across compilers or target architectures. However, none of them

clearly justifies the necessity of such complex semantics-based analyses. They focus only on the end results without

considering the precise reasoning behind their approaches.

This is indeed the key motivation for our research. Although most existing approaches focus on complex

analyses, there may exist elementary features that we have overlooked. For example, there may exist effective

presemantic features, which can beat semantic features regardless of target architectures and compilers. It can be

the case that those known features have not been thoroughly evaluated on the right benchmark as there has been no

comprehensive study on them.

Furthermore, existing research assumes the correctness of the underlying binary analysis framework, such as

IDA Pro [101], which is indeed the most popular tool used as shown in the rightmost column of Table 5.2. However,

CFGs derived from those tools may be inherently wrong. They may miss some important basic blocks, for instance,

which can directly affect the precision of BCSA features.

Indeed, both (S1) and (S2) are challenging research problems by themselves: there are abundant research

efforts to improve the precision of both analyses. For example, disassembling binary code itself is an undecidable

problem [48], and writing an efficient and accurate binary lifter is significantly challenging in practice [156, 215].

Identifying functions from binaries [46, 47, 48, 49, 50, 51] and recovering control-flow edges [216] for indirect

branches are still an active research field. All these observations lead us to research questions in §5.2.3.
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Table 5.2: Summary of the datasets used in previous studies.
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2014

TEDEM [53] 14 · # · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · #
Tracy [177] (115) · 4 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · # · #

CoP [67] (214) · 4 · · · · · · · # # # # # · 1 · · · · · · · · · 1 2 · · · # · · #
LoPD [68] 48 · # · · · · · · · # # # # # · 1 · · · · · · · · · 1 2 · · # # · · ·

BLEX [150] 1,140 · · # · · · · · · # # # # · · 1 · · · · 1 · · · · 1 3 · · · · · · #
BinClone [178] 90 · 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · # · #

2015 Multi-k-MH [70] 60 6 # · # · # · · · # # # # · · 2 · · · · 1 · · · · · 3 · · · · · · #

2016

discovRE [54] 593 3 # · # · # · · · # # # # # · 1 · · · · 1 · · · · 2 4 # · · · · H# #
Genius [71] (7,848) 8,128 # · # · # · · · # # # # · · 2 · · · · 1 · · · · · 3 · · · · · · #

Esh [179] (833) · · # · · · · · · · · · · · · 3 · · · · 2 · · · · 2 7 · · · · # # #
BinGo [58] (5,143) · # # # · · · · · # # # # · · 3 · · · · 1 · · · · 1 5 · · · · · · #

MockingBird [153] 80 · # · # · # · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · · · · #
Kam1n0 [152] 96 · # # · · · · · · · · · · · · · · · · · · · · · · · · · · · · # · #
BinDNN [180] (2,072) · # # # · · · · · # # # # · · 1 · · · · · · · · · 1 2 · · · · · · #

2017

BinSign [181] (31) · 4 · · · · · · · · · · · · · · · · · · · · · · · 2 2 · · · # · · #
Xmatch [59] 72 1 # · · · # · · · · · · · · · 2 · · · · 1 · · · · · 3 # · · · · · #
Gemini [55] 18,269 8,128 # · # · # · · · # # # # · · · 1 · · · · · · · · · 1 · · · · # · #

GitZ [182] 44 · · # · # · · · · # # # # # · 3 · · · · 2 1 · · · 2 8 · · · · · · ·
BinSim [183] 1,062 · # · · · · · · · · · · · · · · · · · · · · · · · · · · · · # · · #

BinSequence [154] (1,718) · 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · #
IMF-sim [151] 1,140 · · # · · · · · · # · # # · · 1 · · · · 1 · · · · 1 3 · · · # · · ·

CACompare [155] 72 · # · # · # · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · · · · #
ASE17 [184] 55 · # # · · · · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · # · · ·

2018

BinArm [60] · 2,628 · · 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · #
SANER18 [185] 7 · # # · · · · · · · · · · · · 1 1 1 · · 1 · · · · 1 5 · · · · · · #

BinGo-E [61] (5,145) · # # # · · · · · # # # # · · 3 · · · · 1 · · · · 1 5 · · · · · · #
WSB [186] (173) · 4 · · · · · · · · # # # · · 1 · · · · 1 · · · · · 2 · · · # · · ·

BinMatch [187] (82) · # · · · · · · · # · # # · · 1 · · · · 1 · · · · · 2 · · · # · · #
MASES18 [145] 47 · 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · # · · ·

Zeek [188] (20,680) · · # · # · · · · # # # # # · 3 · · · · 4 1 · · · 2 10 · · · · · · ·
FirmUp [57] · 2,000 4 · 4 · 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · #

αDiff [62] (69,989) 2 # # # · · · · · # # # # · · 2 1 · · · 2 · · · · · 5 · · · · H# H# #
VulSeeker [56] (10,512) 4,643 # # # # # # · · # # # # · · 1 1 · · · · · · · · · 2 · · · · # · #

2019

InnerEye [144] (844) · · # # · · · · · · # # # · · · · · · · · · · 1 · · 1 · · · · H# H# ·
Asm2Vec [63] 68 · · # · · · · · · # # # # · · 1 1 · · · 2 · · · · 2 6 · · · # # · #

SAFE [64] (5,001) · · # # · · · · · # # # # · 1 3 1 1 1 · 2 1 1 1 · · 12 · · · · # H# #
BAR19i [146] (804) · · # # · · · · · · # # # · · · · · · · · · · 1 · · 1 · · · · # · ·

BAR19ii [149] (11,244) · # # # · · · · · # # # # · 1 3 1 · · · 2 1 1 · · 2 11 · · · · · · #
FuncNet [189] (180) · # · # · # · · · # # # # # · · · 1 · · · · · · · · 1 · · · · · · #

2020

DeepBinDiff [147] (2,206) · · 4 · · · · · · # # # # · · 1 · · · · · · · · · · 1 · · · · # # #
ImOpt [190] 18 · · # · · · · · · # · # # · · · 1 · · · · · · · · · 1 · · · # · · ·

ACCESS20 [173] 12,000 · 4 4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Patchecko [148] 2,108 2 # # # # · · · · # # # # # · · · · · · · · · · · · · · · · · · · #

BINKIT F 243,128 · # # # # # # # # # # # # # · 1 1 1 1 1 · 1 1 1 1 · 9 # # # # # # #

∗ We only mark items that are stated explicitly in the paper. Due to the lack of details about firmware images, we were not able to mark

optimization options or compilers used to create them. For papers that do not explicitly state the number of binaries in their dataset, we

estimated the number and marked it with parentheses.
† This table focuses on two major compilers: GCC and Clang, as other compilers only support a limited number of architectures.
4 We infer the target architectures of the dataset as they are not stated explicitly in the paper.
H# This indicates that only a portion of the code and dataset is available. For example, discovRE [54] makes available only their firmware

images, and αDiff [62] opens transformed function images but not the actual dataset.

5.2.2 Benchmarks Used in Prior Works

It is imperative to use the right benchmark to evaluate a BCSA technique. Therefore, we studied the

benchmarks used in the past literature, as shown in Table 5.2. However, during the study, we found that it is
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radically difficult to properly evaluate a new BCSA technique using the previous benchmarks.

First, we were not able to find a single pair of papers that use the same benchmark. Some of them share

packages such as GNU coreutils [58, 150, 151], but the exact binaries, versions, and compiler options are not the

same. Although there is no known standard for evaluating BCSA, it is surprising to observe that none of the papers

uses the same dataset. We believe this is partly because of the difficulty in preparing the same benchmark. For

example, even if we can download the same version of the source code used in a paper, it is extraordinarily difficult

to cross-compile the program for various target architectures with varying compiler options; it requires significant

effort to set up the environment. Note, however, only two out of 43 papers we studied fully open their dataset. Even

in that case, it is hard to rebuild or extend the benchmark because of the absence of a public compilation script for

the benchmark.

Second, the number of binaries used in each paper is limited and may not be enough for analytics. The

#Binaries column of Table 5.2 summarizes the number of program binaries obtained from two different sources:

application packages and firmware images. Since a single package can contain multiple binaries, we manually

extracted the packages used in each paper and counted the number of binaries in each package. We counted only

the binaries after a successful compilation, such that the object files that were generated during the compilation

process were not counted. If a paper does not explicitly mention package versions, we used the most recent package

versions at the time of writing and marked them with parentheses. Note that only 6 out of 43 papers have more than

10,000 binaries, and none reaches 100,000 binaries. Firmware may include numerous binaries, but it cannot be

directly used for BCSA because one cannot generate the ground truth without having the source code.

Finally, previous benchmarks only cover a few compilers, compiler options, and target architectures. Some

papers do not even describe their tested compiler options or package versions. The Compiler column of the table

presents the number of minor versions used for each major version of the compilers. Notably, all the benchmarks

except one consider less than five different major compiler versions. The Extra column of the table shows the use

of extra compiler options for each benchmark. Here, only a few of them consider function inlining and Link-Time

Optimization (LTO). None of them deals with the Position Independent Executable (PIE) option, although, currently,

it is widely used [217].

All these observations lead us to the research questions presented in the next subsection (§5.2.3) and eventually

motivate us to create our own benchmark that we call BINKIT, which is shown in the last row of Table 5.2.

5.2.3 Research Problems and Questions

We now summarize several key problems observed from the previous literature and introduce research

questions derived from these problems. First, none of the papers uses the same benchmark for their evaluation, and

the way they evaluate their techniques significantly differs. Second, only a few of the studies release their source

code and data, which makes it radically difficult to reproduce or improve upon existing works. Furthermore, most

papers use manually chosen ground truth data for their evaluation, which are easily error-prone. Finally, current

state-of-the-art approaches in BCSA focus on extracting semantic features with complex analysis techniques (from

§5.2.1 and §5.2.1). These observations naturally lead us to the below research questions. Note that some of the

questions are indeed open-ended, and we only address them in part.

RQ1. How should we establish a large-scale benchmark and ground truth data?

One may build benchmarks by manually compiling application source code. However, there are so many

different compiler versions, optimization levels, and options to consider when building binaries. Therefore, it is

desirable to automate this process to build a large-scale benchmark for BCSA. It should be noted that many of

the existing studies have also attempted to build ground truth from source code. However, the number of binaries
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and compiler options used in those studies is limited and is not enough for data-driven research. Furthermore,

those studies release neither their source code nor dataset (§5.2.2). On the contrary, we present a script that can

automatically build large-scale ground truth data from a given set of source packages with clear descriptions (§5.3).

RQ2. Is the effectiveness of presemantic features limited to the target architectures and compiler options used?

We note that most previous studies assume that presemantic features are significantly less effective than

semantic features as they can largely vary depending on the underlying architectures and compiler optimizations

used. For example, compilers may perform target-specific optimization techniques for a specific architecture. Indeed,

36 out of the 43 papers (≈ 84%) we studied focus on new semantic features in their analysis, as shown in Table 5.1.

To determine whether this assumption is valid, we investigate it through a series of rigorous experimental studies.

Although byte-level information significantly varies depending on the target and the optimization techniques, we

found that some presemantic features, such as structural information obtained from CFGs, are broadly similar

across different binaries of the same program. Additionally, we demonstrated that utilizing such presemantic

features without a complex semantic analysis can achieve an accuracy that is comparable to that of a recent deep

learning-based approach with a semantic analysis (§5.5).

RQ3. Can debugging information help BCSA achieve a high accuracy rate?

We are not aware of any quantitative study on how much debugging information affects the accuracy of

BCSA. Most prior works simply assume that debugging information is not available, but how much does it help?

How would decompilation techniques affect the accuracy of BCSA? To answer this question, we extracted a list

of function types from our benchmark and used them to perform BCSA on our dataset. Surprisingly, we were

able to achieve a higher accuracy rate than any other existing works on BCSA without using any sophisticated

method (§5.6).

RQ4. Can we benefit from analyzing failure cases of BCSA?

Most existing works do not analyze their failure cases as they rely on uninterpretable machine learning

techniques. However, our goal is to use a simple and interpretable model to learn from failure and gain insights

for future research. Therefore, we manually examined failure cases using our interpretable method and observed

three common causes for failure, which have been mostly overlooked by the previous literature. First, COTS binary

analysis tools indeed return false results. Second, different compiler back-ends for the same architecture can be

substantially different from each other. Third, there are architecture-specific code snippets for the same function.

We believe that all these observations help in setting directions for future studies (§5.7).

Analysis Scope. In this chapter, we focus on function-level similarity analyses because functions are a fundamental

unit of binary analysis, and function-level BCSA is widely used in previous literature [150, 54, 151, 62, 59, 152,

144, 64]. We believe one can easily extend our work to support whole-binary-level similarity analyses as in the

previous papers [67, 68].

5.3 Establishing Large-Scale Benchmark and Ground Truth (RQ1)

Building a large-scale benchmark for BCSA and establishing its ground truth is challenging. One potential

approach for generating the ground truth data is to manually identify similar functions from existing binaries

or firmware images [53, 177, 179]. However, this requires domain expertise and is often error-prone and time-

consuming.
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Table 5.3: Summary of BINKIT.

Dataset # of # of # of # of # of # of Orig. # of Final
Name Packages Architectures Opti-Levels Compilers Binaries Functions Functions∗

NORMAL 51 8 4 9 67,680 34,355,824 8,708,459
SIZEOPT 51 8 1† 9 16,920 8,350,442 2,060,625
PIE 46† 8 4 9 36,000 23,090,676 7,766,235
NOINLINE 51 8 4 9 67,680 38,617,186 10,291,001
LTO 29† 8 4 9 24,768 12,279,982 3,375,308
OBFUSCATION 51 8 4 4‡ 30,080 15,809,489 4,054,694

Total 51 1,352 Options 243,128 132,503,599 36,256,322

∗ The target functions are selected in the manner described in §5.3.2.
† The number of packages and compiler options varies because some packages can be compiled only with a specific set of

compile options.
‡ We count each of the four obfuscation options as a distinct compiler (§5.3.1).

Another approach for obtaining the ground truth is to compile binaries from existing source code with

varying compiler options and target architectures [71, 58, 56, 59]. If we compile multiple binaries (with different

compiler options) from the same source code, one can determine which function corresponds to which source lines.

Unfortunately, most existing approaches do not open their benchmarks nor compilation scripts used to produce

them (Table 5.2).

Therefore, we present BINKIT, which is a comprehensive benchmark for BCSA, along with automated

compilation scripts that help reproduce and extend it for various research purposes. The rest of this section details

BINKIT and discusses how we establish the ground truth (RQ1).

5.3.1 BINKIT: Large-Scale BCSA Benchmark

BINKIT is a comprehensive BCSA benchmark that comprises 243,128 binaries compiled from 51 package

source code with 1,352 distinct combinations of compilers, compilation options, and target architectures. Therefore,

BINKIT covers most of the benchmarks used in existing approaches as shown in Table 5.2. BINKIT includes

binaries compiled for 8 different architectures. For example, we use both little- and big-endian binaries for MIPS

to investigate the effect of endianness. It uses 9 different versions of compilers: GCC v{4.9.4, 5.5.0, 6.4.0, 7.3.0,

8.2.0} and Clang v{4.0, 5.0, 6.0, 7.0}. We also consider 5 optimization levels from O0 to O3 as well as Os, which

is the code size optimization. Finally, we take PIE, LTO, and obfuscation options into account, which are less

explored in BCSA.

We select GNU software packages [218] as our compilation target because of their popularity and accessibility:

they are real applications that are used widely in Linux systems, and their source code is publicly available. We

successfully compiled 51 GNU packages for all our target architectures and compiler options.

To better support targeted comparisons, we divide BINKIT into six datasets: NORMAL, SIZEOPT, NOINLINE,

PIE, LTO, and OBFUSCATION. The summary of each dataset is shown in Table 5.3. Each dataset contains binaries

obtained by compiling the GNU packages with different combinations of compiler options and targets. There is no

intersection among the datasets. NORMAL includes binaries compiled for 8 different architectures with different

compilers and optimization levels. We did not use other extra options such as PIE, LTO, and no-inline for this

dataset. SIZEOPT is the same as NORMAL except that it uses only the Os optimization option instead of O0–O3.

Similarly, PIE, NOINLINE, LTO, OBFUSCATION are no different from NORMAL except that they are generated by

using an additional flag to enable PIE, to disable inline optimization, to enable LTO, and to enable compile-time

obfuscation, respectively.

PIE makes memory references in binary relative to support ASLR. On some architectures, e.g., x86, compilers
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inject additional code snippets to achieve relative addressing. As a result, the compiled output can differ severely.

Although PIE became the default on most Linux systems [217], it has not been well studied for BCSA. Note we

were not able to compile all the 51 packages with the PIE option enabled. Therefore, we have fewer binaries in PIE

than NORMAL.

Function inlining embeds callee functions into the body of the caller. This can make presemantic features

largely vary. Therefore, we investigate the effect of function inlining on BCSA by explicitly turning off the inline

optimization with the fno-inline option.

LTO is an optimization technique that operates at link time. It removes unnecessary code blocks, thereby

reducing the number of presemantic features. However, it also has been less studied in BCSA. We were only able

to successfully compile 29 packages when the LTO option is enabled.

Finally, the OBFUSCATION dataset uses Obfuscator-LLVM [219] to obfuscate the target binaries. We chose

Obfuscator-LLVM among various other tools previously used [219, 220, 221, 222, 223, 224] because it is the most

commonly used [151, 187, 181, 63, 190], and we can directly compare the effect of obfuscation using the vanilla

LLVM compiler. We use Obfuscator-LLVM’s latest version with four obfuscation options: instruction substitution

(SUB), bogus control flow (BCF), control flow flattening (FLA), and a combination of all the options. We regard

each option as a distinct compiler, as shown in the Comp column of Table 5.3. One can obfuscate a single binary

multiple times. However, we only applied it once. This is because obfuscating a binary multiple times could emit

a significantly large binary, which becomes time-consuming for IDA Pro to preprocess. For example, when we

obfuscate a2ps twice with all three options, the compiled binary reaches over 30 MB, which is 30 times larger than

the normal one.

The number of packages and that of compiler options used in compiling each dataset differ because some

packages can be compiled only with a specific set of compile options and targets. Some packages fail to compile

because they have architecture-specific code, such as inline assemblies, or because they use compiler-specific

grammars. For example, Clang does not support both the LTO option and the Os option to be turned on. There are

also cases where packages have conflicting dependencies. We also excluded the ones that did not compile within

30 min because some packages require a considerable amount of time to compile. For instance, smalltalk took

more than 10 h to compile with the obfuscation option enabled.

To summarize, BINKIT contains 243,128 binaries and 36,256,322 functions in total, which is indeed many

orders of magnitude larger than the other benchmarks that appear in the previous literature. The Source column

of Table 5.2 shows the difference clearly. BINKIT does not include firmware images because our goal is to

automatically build a benchmark with the clear ground truth. One may extend our benchmark with firmware images.

However, it would take significant manual effort to identify their ground truth. For additional details regarding each

package, please refer to Table 5.11.

Our benchmark and compilation scripts are available on GitHub. Our compilation environment is based on

Crosstool-NG [225], GNU Autoconf [226], and Linux Parallels [227]. Through this environment, we compiled the

entire datasets of BINKIT in approximately 30 h on our server machine with 144 Intel Xeon E7-8867v4 cores.

5.3.2 Building Ground Truth

Next, we establish the ground truth for our dataset. We first define the criteria for determining the equivalence

of two functions. In particular, we check whether two functions with the same name originated from the same

source files and have the same line numbers. Additionally, we verify that both functions come from the same

package and have the same name in their binaries to ensure their equivalence.

Based on these criteria, we constructed the ground truth by performing the following steps. First, we compiled
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all the binaries with debugging information using the -g option. We then leveraged IDA Pro [101] to identify

functions in the compiled binaries. Next, we labeled each identified function with its name, package name, binary

name, as well as the name of the corresponding source file and line numbers. To achieve this, we wrote a script that

parses the debugging information from each binary.

Using this information, we then sanitize our dataset to avoid having incorrect or biased results. Among the

identified functions, we selected only the ones in the code (.text) segments as functions in other segments may not

include valid binary code. For example, we disregarded functions in the Procedure Linkage Table (.plt) sections

because these functions are wrappers to call external functions and do not include actual function bodies. In our

dataset, we filtered out 40% of the identified functions in this step.

We also disregarded approximately 4% of the functions that are generated by the compiler, but not by the

application developers. We can easily identify such compiler intrinsic functions by checking the corresponding

source files and line numbers. For example, GCC utilizes intrinsic functions such as __udivdi3 in libgcc2.c or

__aeabi_uldivmod in bpabi.S to produce highly optimized code.

Additionally, we removed duplicate functions within the same project/package. Two different binaries often

share the same source code especially when they are in the same project/package. For example, the GNU coreutils

package contains 105 different executables that share 80% of the functions in common. We removed duplicate

functions within each package by checking the source file names and their line numbers. Moreover, compilers can

also generate multiple copies of the same function within a single binary due to optimization. These functions share

the same source code but have a difference in their binary forms. For example, some parts of the binary code are

removed or reordered for optimization purposes. As these functions share a large portion of code, considering all of

them would produce a biased result. To avoid this, we selected only one copy for each of such functions in our

experiments. This step filtered out approximately 54% of the remaining functions. The last column of Table 5.3

reports the final counting results, which is the number of unique functions.

By performing all the above steps, we can automatically build large-scale ground truth data. The total time

spent building the ground truth of all our datasets was 13,300 seconds. By leveraging this ground truth data, we

further investigate the remaining research questions (i.e., RQ2–RQ4) in the following sections. To encourage

further research, we have released all our datasets and source code.

5.4 Building an Interpretable Model

Previous BCSA techniques focused on achieving a higher accuracy by leveraging recent advances in deep

learning techniques [62, 145, 55, 56]. This often requires building a complicated model, which is not straightforward

to understand and hinders researchers from reasoning about the BCSA results and further answering the fundamental

questions regarding BCSA. Therefore, we design an interpretable model for BCSA to answer the research questions

and implement TIKNIB, which is a BCSA tool that employs the model. This section illustrates how we obtain such

a model and how we set up our experimental environment.

5.4.1 TIKNIB Overview

At a high level, TIKNIB leverages a set of presemantic features widely used in the previous literature to

reassess the effectiveness of presemantic features (RQ2). It evaluates each feature in two input functions, based on

our similarity scoring metric (§5.4.3), which directly measures the difference between each feature value. In other

words, it captures how much each feature differs across different compile options.

Note TIKNIB is intentionally designed to be simple so that we can answer the research questions presented
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Table 5.4: Summary of numeric presemantic features used in TIKNIB.

Category Features Count

CFG

# of basic blocks, edges, loops, SCCs, and back edges

41

# of all, arith, data transfer, cmp, and logic instrs.
# of shift, bit-manipulating, float, misc instrs.
# of arith + shift, and data transfer + misc instrs.
# of all/unconditional/conditional control transfer instrs.
Avg. # of edges per a basic block
Avg./Sum of basic block, loop, and SCC sizes
Avg. # of all, arith, data transfer, cmp, and logic instrs.
Avg. # of shift, bit-manipulating, float, misc instrs.
Avg. # of arith + shift, and data transfer + misc instrs.
Avg. # of all/unconditional/conditional control transfer instrs.

CG
# of callers, callees, imported callees

6# of incoming/outgoing/imported calls

Total 47

in §5.2.3. Despite the simplicity of our approach, TIKNIB still produces a high accuracy rate that is comparable to

state-of-the-art tools (§5.5.2). We are not arguing here that TIKNIB is the best BCSA algorithm.

5.4.2 Features Used in TIKNIB

Recall from RQ2, one of our goals is to reconsider the capability of presemantic features. Therefore, we focus

on choosing various presemantic features used in the previous BCSA literature instead of inventing novel ones.

However, creating a comprehensive feature set is not straightforward because of the following two reasons.

First, there are numerous existing features, which are similar to one another, as discussed in Chapter 2. Second,

some features require domain-specific knowledge, which is not publicly available. For example, several existing pa-

pers [54, 71, 55, 56, 61, 181, 60, 185] categorize instructions into semantic groups. However, grouping instructions

is largely a subjective task, and there is no known standard for it. Furthermore, most existing works do not make

their grouping algorithms public.

We address these challenges by (1) manually extracting representative presemantic features and (2) open-

sourcing our feature extraction implementation. Specifically, we focus on numeric presemantic features. Because

these features are represented as a number, the relationship among their values across different compile options can

be easily observed.

Table 5.4 summarizes the selected features. Our feature set consists of CFG- and CG-level numeric features

as they can effectively reveal structural changes in the target code. In particular, we utilize features related to

basic blocks, CFG edges, natural loops, and strongly connected components (SCCs) from CFGs, by leveraging

NetworkX [228]. We also categorize instructions into several semantic groups based on our careful judgment by

referring to the reference manuals [229, 230, 231] and leveraging Capstone [232]’s internal grouping. Next, we

count the number of instructions in each semantic group per function (i.e., CFG). Additionally, we take six features

from CGs. The number of callers and callees represents a unique number of outgoing and incoming edges from

CGs, respectively.

To extract these features, we conducted the following steps. First, we pre-processed the binaries in BINKIT

with IDA Pro [101]. We then generated the ground truth of these binaries as we described in §5.3.2. For those

functions of which we have the ground truth, we extracted the aforementioned features. Table 5.5 shows the time

spent for each of these steps. The IDA pre-processing took most of the time as IDA performs various internal

analyses. Meanwhile, the feature extraction took much less time as it merely operates on the precomputed results

from the pre-processing step.
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Table 5.5: Breakdown of the time for extracting features from BINKIT.

Dataset
Name

IDA
Pre-processing

(s)

Ground Truth
Building

(s)

Feature
Extraction

(s)

Avg. Feature†

Extraction
(ms)

NORMAL 14,968.42 3,380.01 661.81 0.08
SIZEOPT 2,171.70 353.13 649.57 0.32
PIE 13,893.92 2,601.74 133.60 0.02
NOINLINE 14,780.06 3,883.88 579.82 0.06
LTO 5,263.97 1,314.94 392.48 0.12
OBFUSCATION 97,723.47 1,766.60 4,189.44 1.03

† The average time spent for extracting features from a function, which is computed

by dividing the total time (the fourth column of this table) by the number of functions

(the last column of Table 5.3).

5.4.3 Scoring Metric

Our scoring metric is based on the computation of the relative difference [233] between feature values. Given

two functions A and B, let us denote a value of feature f for each function as A f and B f , respectively. Recall that

any feature in TIKNIB can be represented as a number. We can compute the relative difference δ of the two feature

values as follows:

δ (A f ,B f ) =
|A f −B f |
|max(A f ,B f )|

(5.1)

Let us suppose we have N distinct features ( f1, f2, · · · , fN) in our feature set. We can then define our similarity

score s between two functions A and B by taking the average of relative differences for all the features as follows:

s(A,B) = 1−
(
δ (A f1 ,B f1)+ · · ·+δ (A fN ,B fN )

)
N

(5.2)

Although each numeric feature can have a different range of values, TIKNIB can effectively handle them using

relative differences by representing the difference of each feature with a value between 0 and 1. Therefore, the

score s is always within the range of 0 to 1.

Furthermore, we can intuitively understand and interpret the BCSA results using our scoring metric. For

example, suppose there are two functions A and B derived from the same source code with and without compiler

option X , respectively. If the relative difference of the feature value f between the two functions is small, it implies

that f is a robust feature against compiler option X .

In this thesis, we focus only on simple relative differences, rather than exploring complex relationships among

the features for interpretability. However, we believe that our approach could be a stepping-stone toward fabricating

more improved interpretable models to understand such complex relationships.

5.4.4 Feature Selection

Based on our scoring metric, we perform lightweight preprocessing to select useful features for BCSA as some

features may not help in making a distinction between functions. To measure the quality of a given feature set, we

compute the area under the receiver operating characteristic (ROC) curve (i.e., the ROC AUC) of generated models.

Suppose we are given a dataset in BINKIT, which is generated from source code containing N unique functions.

In total, we have maximum N ·M functions in our dataset, where M is the number of combinations of compiler

options used to generate the dataset. The actual number of functions can be less than N ·M due to function inlining.

For each unique function λ , we randomly select two other functions with the following conditions. (1) A true

positive (TP) function, λ TP, is generated from the same source code as in λ , with different compiler options, and

(2) a true negative (TN) function, λ TN, is generated from source code that is different from the one used to generate
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λ , with the same compiler options as for λ TP. We generate such pairs for each unique function, thereby acquiring

around 2 ·N function pairs. We then compute the similarity scores for the functions in each pair and their AUC.

We note that the same methodology has been used in prior works [55, 56]. We chose the method as it

can efficiently analyze the tendency over a large-scale dataset. One may also consider top-k [55, 57, 63, 56] or

precision@k [55, 63] as an evaluation metric, but this approach takes too much computational overhead: O((N ·M)2)

operations.

Unfortunately, there is no efficient algorithm for selecting an optimal feature subset to use; it is indeed a

well-known NP-hard problem [234]. Therefore, we leverage a greedy feature selection algorithm [235]. Starting

from an empty set F, we determine whether we can add a feature to F to increase its AUC. For every possible

feature, we make a union with F and compute the corresponding AUC. We then select one that maximizes the

AUC and update F to include the selected feature. We repeat this process until the AUC does not increase further

by adding a new feature. Although our approach does not guarantee finding an optimal solution, it still provides

empirically meaningful results, as we describe in the following sections.

5.4.5 Experimental Setup

For all experiments in this study, we perform 10-fold cross-validation on each test. When we split a test

dataset, we ensure functions that share the same source code (i.e., source file name and line number) are either in a

training or testing set, but not in both. For each fold, during the learning phase, i.e., the feature selection phase,

we select up to 200K functions from a training set and conduct feature selection, as training millions of functions

would take a significant amount of time. Limiting the number of functions for training may degrade the final results;

however, when we tested the number of functions from 100K to 1000K, the result remained almost consistent. In

the validation phase, we test all the functions in the testing set without any sampling. Thus, after 10-fold validation,

all the functions in the target dataset are tested at least once.

We ran all our experiments on a server equipped with four Intel Xeon E7-8867v4 2.40 GHz CPUs (total 144

cores), 896 GB DDR4 RAM, and 8 TB SSD. We set up Ubuntu 18.04.5 LTS with IDA Pro v6.95 [101] on the

server. For feature selection and similarity comparison, we utilized Python scikit-learn [236], SciPy [237], and

NumPy [238].

5.5 Presemantic Feature Analysis (RQ2)

We now present our experimental results using TIKNIB on the presemantic features (§5.4.2) to answer RQ2

(§5.2.3). With our comprehensive analysis of these features, we obtained several useful insights for future research.

In this section, we discuss our findings and lessons learned.

5.5.1 Analysis Result

To analyze the impact of various compiler options and target architectures on BCSA, we conducted a total of

72 tests using TIKNIB. We conducted the tests on our benchmark, BINKIT, with the ground truth that we built

in §5.3. Table 5.6 describes the experimental results where each column corresponds to a test we performed. Note

that we present only 26 out of 72 tests because of the space limit. Unless otherwise specified, all the tests were

performed on the NORMAL dataset. As described in §5.4.4, we prepared 10-fold sets for each test. We divided the

tests into seven groups according to their purposes as shown in the top row of the table. For example, the Arch

group contains a set of tests to evaluate each feature against varying target architecture.
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For each test, we select function pairs for training and testing as described in §5.4.4. That is, for a function

λ , we select its corresponding functions (i.e., λ TP and λ TN). Therefore, N functions produce 2 ·N functions pairs.

The first row ( 1 ) of Table 5.6 shows the number of function pairs for each test. When selecting these pairs, we

deliberately choose the target options based on the goal of each test. For instance, we test the influence of varying

the target architecture from x86 to ARM (x86 vs. ARM column of Table 5.6). For each function λ in the x86

binaries of our dataset, we select both λ TP and λ TN from the ARM binaries compiled with the same compiler

option as in λ . In other words, we fix all the other options, except for the target architecture for choosing λ TP and

λ TN to focus on our testing goal. The same rule applies to other columns. For the Rand. columns, we alter all the

compiler options in the group randomly to generate function pairs.

The second row ( 2 ) of Table 5.6 presents the time spent for training and testing in each test, which excludes

the time for loading the function data on the memory. The average time spent for a single function was less than 1

ms.

Each cell in the third row ( 3 ) of Table 5.6 represents the average of δ (λ f ,λ
TN
f )− δ (λ f ,λ

TP
f ) for feature

f , which we call the TP-TN gap of f . This TP-TN gap measures the similarity between λ TP and λ , as well as

the difference between λ TN and λ , in terms of the target feature. Thus, when the gap of a feature is larger, its

discriminative capability for BCSA is higher. As we conduct 10-fold validation for each test, we highlight the cells

with gray when the corresponding feature is chosen in all ten trials. Such features show relatively higher TP-TN

gaps than the others do in each test. We also present the average TP-TN gaps in the fourth row ( 4 ) of the table.

The average number of the selected features in each test is shown in the fifth row ( 5 ) of Table 5.6. A few

presemantic features could achieve high AUCs and average precisions (APs), as shown in the sixth row ( 6 ) and

seventh row ( 7 ) of the same table, respectively. We now summarize our observations as follows.

(1) Optimization is largely influential

Many researchers have focused on designing a model for cross-architecture BCSA [70, 58, 54, 153, 61].

However, our experimental results show that architecture may not be the most critical factor for BCSA. Instead,

optimization level was the most influential factor in terms of the relative difference between presemantic features.

In particular, we measured the average TP-TN gap of all the presemantic features for each test (Avg. of TP-TN Gap

row of the table) and found that the average gap of the O0 vs. O3 test (0.41) is less than that of the x86 vs. ARM test

(0.46) and the x86 vs. MIPS test (0.42). Furthermore, the optimization level random test (Rand. column of the Opt

Level group) shows the lowest AUC (0.96) compared to that of the architecture and compiler group (0.98). These

results confirm that compilers can produce largely distinct binaries depending on the optimization techniques used;

hence, the variation among the binaries due to the optimization is considerably greater than that due to the target

architecture on our dataset.

(2) Compiler version has a small impact

Approximately one-third of the previous benchmarks shown in Table 5.2 employ multiple versions of the

same compiler. However, we found that even the major versions of the same compiler produce similar binaries. In

other words, compiler versions do not heavily affect presemantic features. Although Table 5.6 does not include all

the tests we performed because of the space constraints, it is apparent from the Compiler column that the two tests

between two different versions of the same compiler, i.e., GCC v4 vs. GCC v8 and Clang v4 vs. Clang v7, have

much higher TP-TN gaps (0.52) than other tests, and their AUCs are close to 1.0.
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(3) GCC and Clang have diverse characteristics

Conversely, the GCC vs. Clang test resulted in the lowest TP-TN gap (0.44) and AUC (0.97) among the tests in

the Compiler group. This can be because each compiler employs a different back-end, thereby producing different

binaries. Another potential problem is that the techniques inside each optimization level can vary depending on the

compiler. We detail this in §5.7.2.

(4) ARM binaries are closer to x86 binaries than MIPS

The tests in the Arch group measure the influence of target architectures with the NORMAL dataset. Overall,

the target architecture did not have much of an effect on the accuracy rate. The AUCs were over 0.98 in all the

cases. Surprisingly, the x86 vs. ARM test had the highest TP-TN gap (0.46) and AUC (1.0), indicating that the

presemantic features of the x86 and ARM binaries are similar to each other, despite being distinct architectures.

The ARM vs. MIPS test showed a lower TP-TN gap (0.43) and AUC (0.98) although both of them are RISC

architectures. Additionally, the effect of the word size (i.e., bits) and endianness was relatively small. Nevertheless,

we cannot rule out the possibility that our feature extraction for MIPS binaries is erroneous. We further discuss this

issue in §5.7.1.

(5) Closer optimization levels show similar results

We also measured the effect of size optimization (Os) by matching function λ in the NORMAL dataset with

a function (λ TP and λ TN) in the SIZEOPT dataset. Subsequently, the binaries compiled with the Os option were

similar to the ones compiled with the O1 and O2 options. This is not surprising because Os enables most of the O2

techniques in both GCC and Clang [239, 240]. Furthermore, we observe that the O1 and O2 options produce similar

binaries, although it is not shown in Table 5.6 due to the space limit.

(6) Extra options have less impact

To assess the influence of the PIE, no-inline, and LTO options, we compared functions in the NORMAL dataset

with those in the PIE, NOINLINE, and LTO datasets, respectively. For the no-inline test, we limit the optimization

level from O1 to O3 as function inlining is applied from O1. It was observed that the influence of such extra options

is not significant. Binaries with and without the PIE option were similar to each other because it only changes the

instructions to use relative addresses; hence, it does not affect our presemantic features. Function inlining also does

not affect several features, such as the number of incoming calls, which results in a high AUC (0.97). LTO does not

exhibit any notable effect either.

However, by analyzing each test case, we found that some options affect the AUC more than others. For

example, in the no-inline test, the AUC largely decreases as the optimization level increases: O1 (0.995), O2 (0.981),

and O3 (0.967). This is because as more optimization techniques are applied, more functions are inlined and

transformed in the NORMAL, while their corresponding functions in the NOINLINE are not inlined. On the other

hand, in the LTO test, the AUC increases as the version of Clang increases: v4 (0.956), v5 (0.968), v6 (0.986), and

v7 (0.986). In contrast, GCC shows stable AUCs (0.987–0.988) across all versions, and all the AUCs are higher

than those of Clang. This result indicates that varying multiple options would significantly affect the success rate,

which we describe below.
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Table 5.7: Summary of datasets for comparing TIKNIB to VulSeeker (i.e., ASE datasets).

Name Package Architecture Compiler
(GCC)

# of Orig.
Funcs

# of Final
Funcs

ASE1 OpenSSL v1.0.1{f,u} {x86,arm,mips} 32 v5.5.0 152K 126K

ASE2
OpenSSL v1.0.1{f,u}
BusyBox v1.21
Coreutils v6.{5,7}

” ” 704K 183K

ASE3 ” {x86,arm,mips} 32,
{x86,arm,mips} 64

v4.9.4,
v5.5.0 2,777K 735K

ASE4 ” Same as NORMAL options 16,799K 4,467K

As the index of the dataset grows, the number of packages, architectures, and compiler options

increases ASE1 and ASE3 are the datasets used in VulSeeker [56]. For all datasets, the optimization

levels are O0–O3.

(7) Obfuscator-LLVM does not affect CG features

Many previous studies [151, 187, 181, 63, 190] chose Obfuscator-LLVM [219] for their obfuscation tests

as it significantly varies the binary code [63]. However, applying all of its three obfuscation options shows an

AUC of 0.95 on our dataset, which is relatively higher than that of the optimization level tests. Obfuscation

severely decreases the average TP-TN gaps except for CG features. This is because Obfuscator-LLVM applies

intra-procedural obfuscation. The SUB obfuscation substitutes arithmetic instructions while preserving the semantics;

the BCF obfuscation notably affects CFG features by adding bogus control flows; the FLA obfuscation changes

the predicates of control structures [241]. However, none of them conducts inter-procedural obfuscation, which

modifies the function call relationship. Thus, we encourage future studies to use other obfuscators, such as

Themida [242] or VMProtect [221], for evaluating their techniques against inter-procedural obfuscation.

(8) Comparison target option does matter

Based on the experimental results thus far, we perform extra tests to understand the influence of comparing

multiple compiler options by intentionally selecting λ TP and λ TN from binaries that could provide the lowest

TP-TN gap. In this study, we present two of them because of the space limit. Specifically, for the first test, we

selected functions from 32-bit ARM binaries compiled using GCC v4 with the O0 option, and the corresponding

λ TP and λ TN functions from 64-bit MIPS big-endian binaries compiled using Clang v7 with the O3 option. For the

second test, we changed the Clang compiler to the Obfuscator-LLVM with all three obfuscation options turned on.

The Bad column of the table summarizes the results. The AUC of both cases was approximately 0.93 and 0.91,

respectively. Their average TP-TN gaps were also significantly lower (0.42 and 0.27) than those in the other tests.

This signifies the importance of choosing the comparison targets for evaluating BCSA techniques. Existing BCSA

research compares functions for all possible targets in a dataset, as shown in the Rand. tests in this study. However,

our results suggest that researchers should carefully choose evaluation targets to avoid overlooking the influence of

bad cases.

5.5.2 Comparison Against State-of-the-Art Techniques

From our experiments in §5.5.1, we show that using only presemantic features with a simple linear model (i.e.,

TIKNIB) is enough to obtain high AUC values. Next, we compare TIKNIB with state-of-the-art techniques.

To accomplish this, we chose one of the latest approaches, VulSeeker [56], as our target because it utilizes

both presemantic and semantic features in a numeric form by leveraging neural network-based post-processing.

Thus, we can directly evaluate our simple model using numeric presemantic features. Note that our goal is not
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Figure 5.2: Experimental results obtained by running TIKNIB on ASE datasets.

to claim that our approach is better, but to demonstrate that the proper engineering of presemantic features can

achieve results that are comparable to those of state-of-the-art techniques.

For this experiment, we prepared the datasets of VulSeeker, along with the additional ones as listed in Table 5.7.

We refer to these datasets as ASE1 through ASE4. ASE1 and ASE3 are the ones used in VulSeeker, and ASE2

and ASE4 are extra ones with more packages, target architectures, and compilers. Note that the number of packages,

architectures, and compiler options increases as the index of the dataset increases. The optimization levels for all

datasets are O0–O3. We intentionally omitted firmware images used in the original paper, as they do not provide solid

ground truth. For each dataset, we established the ground truth in the same way described in §5.3.2. The time spent

for IDA pre-processing, ground truth building, and feature extracting was 2197 s, 889 s, and 239 s, respectively. We

then conducted experiments with the methodology explained in §5.4; note that the same methodology was used in

the original paper.

Figure 5.2 depicts the results. Figure 5.2a shows that the AUCs of TIKNIB on ASE1 and ASE3 are 0.9724

and 0.9783, respectively. However, those of VulSeeker were 0.99 and 0.8849 as reported by the authors [56].

Figure 5.2b illustrates that the AUC of each fold in ASE3 ranged from 0.9777 to 0.9793, which is higher than

that of VulSeeker (0.8849). Therefore, TIKNIB was more robust than VulSeeker in terms of the size and compile

options in the dataset. TIKNIB also exhibits stable results even for ASE2 and ASE4.

From these results, we conclude that presemantic features with proper feature engineering can achieve results

that are comparable to those of state-of-the-art BCSA techniques. Although our current focus is on comparing

feature values, it is possible to extend our work to analyze the complex relationships among the features by utilizing

advanced machine learning techniques [56, 71, 55, 144, 62, 145, 63, 64, 146, 147, 148, 149].

5.5.3 Analysis on Real-World Vulnerabilities

To further assess the effectiveness of presemantic features, we apply TIKNIB to vulnerability discovery, which

is a common practical application of BCSA [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64]. We investigate whether

TIKNIB can effectively identify a vulnerable function across various compiler options and architectures.

We chose the tls1_process_heartbeat function in the OpenSSL package as our target function because it

contains the infamous Heartbleed vulnerability (i.e., CVE-2014-0160), and has thus been used in many prior BCSA

studies to evaluate their approaches [54, 55, 71, 63]. We utilized two versions of OpenSSL in the ASE4 dataset

shown in Table 5.7: One (i.e., v1.0.1f) contains the vulnerable function, while the other (i.e., v1.0.1u) contains the

patched version. As the dataset was compiled with 288 distinct combinations of compiler options and architectures,
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each function has 576 samples: 288 (the number of possible combinations) × 2 (the number of available OpenSSL

versions) ≈ 576.

Notably, testing all possible combinations of options entails a significant computational overhead; it requires

288 (the number of options for our target function) × 287 (the number of options for a function in OpenSSL) ×
2 (the number of OpenSSL versions) × 5K (the number of functions in OpenSSL) ≈ 826M operations. Therefore,

we focused on architectures and compiler options that are widely used in software packages. Specifically, we

chose three 64-bit architectures (ARM, x86, and MIPS) and two levels of optimization (O2 and O3). This setup

reflects real-world scenarios, as many software packages use O2–O3 by default: coreutils uses O2, while OpenSSL

uses O3. Previous studies [63, 179] also used the same setup (O2–O3) except the architecture; they only tested for

x86. Additionally, we selected four compilers (Clang v4.0, Clang, v7.0, GCC v4.9.4, and GCC v8.2.0) to consider

extreme cases. Consequently, there were 24 possible combinations of these architectures and compiler options.

We conducted a total of 552 tests on these 24 option combinations: 24 (the number of options for our target

function) × 23 (the number of options for a function in OpenSSL). For each test, we simply computed the similarity

scores for all function pairs using TIKNIB and checked the rank of the vulnerable function. To reflect real-world

scenarios, we assumed in all tests that we were not aware of the precise optimization level, compiler type, or

compiler version of the testing binary. On the other hand, we assumed that we could recognize the architecture of

the testing binary as it is straightforward. Therefore, when we train TIKNIB, we chose a feature set that achieved

the best performance across all possible combinations of optimization levels, compiler types, and compiler versions,

while setting the source and target architectures fixed. For training, we used the NORMAL dataset (Table 5.3) as it

does not include OpenSSL; thus, the training and testing datasets are completely distinct.

Table 5.8 summarizes the experimental results, with each column corresponding to the tests for the specified

options. We organized the results by option group specified in each column after running all 522 tests. The first row

of the table (# of Option Pairs) indicates the total number of options pairs, which is the same as that of true positive

pairs. The remaining rows of the table show the averaged values obtained by the option pair tests. For example, the

All to All column represents the averaged results of all possible combinations (24×23). The ARM to MIPS column,

on the other hand, represents the averaged results of all combinations with the source and target architectures set to

ARM and MIPS, respectively. That is, we queried the vulnerable functions compiled with ARM and searched for

its true positives compiled with MIPS while modifying the other options.

In the majority of the tests, TIKNIB successfully identified the vulnerable function with a rank close to 1.0

and a precision@1 close to 1.0, demonstrating its effectiveness in vulnerability discovery. Meanwhile, it performed

marginally worse in the tests for MIPS. This result corroborates our observation in §5.5.1 that feature extraction

for MIPS binaries can be erroneous. We further discuss this issue in §5.7.1. Additionally, the last three rows

of Table 5.8 display the ranks of additional functions worth noting. The dtls represents the DTLS implementation

of our target function (i.e., dtls1_process_heartbeat), which also contains the vulnerability. Due to its similarity

to our target function, it was ranked highly in all tests. The last two rows of the table present the ranks of the

patched versions of these two functions in OpenSSL v1.0.1u. Notably, the patch of the vulnerability affects the

presemantic features of these functions, particularly the number of control transfer and arithmetic instructions.

Consequently, the patched functions had a low rank.

5.6 Benefit of Type Information (RQ3)

To evaluate the implication of debugging information on BCSA, we select type information as a case study

on the presumption that they do not vary unless the source code is changed. Specifically, we extract three types

of features per function: the number of arguments, types of arguments, and return type of a function. Note that
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Figure 5.3: Experimental results obtained by running TIKNIB on ASE datasets including type features.

inferring the correct type information is challenging and is actively researched [243, 244]. In this context, we

only consider basic types: char, short, int, float, enum, struct, void, and void *. To extract type information,

we create a type map to handle custom types defined in each package by recursively following definitions using

Ctags [245]. We then assign a unique prime number as an identifier to each type. To represent the argument types

as a single number, we multiply their type identifiers.

To investigate the benefit of these type features, we conducted the same experiments described in §5.5,

and Table 5.9 presents the results. Here, we explain the results by comparing them with Table 5.6, which we

obtained without using the type features. The first row of Table 5.9 shows that the average number of selected

features including type features is smaller than that of selected features ( 5 ) in Table 5.6. Note that all three type

features were always selected in all tests. The second row in Table 5.9 shows that utilizing the type features could

achieve a large TP-TN gap on average (over 0.50); the corresponding values in 4 of Table 5.6 are much smaller.

Consequently, the AUC and AP with type features reached over 0.99 in all tests, as shown in the last two rows

of Table 5.9. Additionally, it shows a similar result (i.e., an AUC close to 1.0) on the ASE datasets that we utilized

for the state-of-the-art comparison (§5.5.2), and Figure 5.3 illustrates the result.

This result confirms that type information indeed benefits BCSA in terms of the success rate, although

recovering such information is a difficult task. Therefore, we encourage further research on BCSA to take account

of recovering debugging information, such as type recovery or inference, from binary code [246, 247, 243, 244,

248, 249].

5.7 Failure Case Inquiry (RQ4)

We carefully analyzed the failure cases in our experiments and found their causes. It was possible because

our benchmark (i.e., BINKIT) has the ground truth and our tool (i.e., TIKNIB) uses an interpretable model. We

first checked the TP-TN gap of each feature for failure cases and further analyzed them using IDA Pro. We found

that optimization largely affects the BCSA performance as described in §5.5.1. In this section, we discuss other

failure causes and summarize the lessons learned; however, many of these causes are closely related to optimization.

We categorized the causes into three cases: (1) errors in binary analysis tools (§5.7.1), (2) differences in compiler

back-ends (§5.7.2), and (3) architecture-specific code (§5.7.3).
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5.7.1 Errors in Binary Analysis Tools

Most BCSA research heavily relies on COTS binary analysis tools such as IDA Pro [101]. However, we found

that IDA Pro can yield false results. First, IDA Pro fails to analyze indirect branches, especially when handling

MIPS binaries compiled with Clang using the position-independent code (PIC) option. The PIC option sets the

compiler to generate machine code that can be placed in any address, and it is mainly used for compiling shared

libraries or PIE binaries. Particularly, compilers use register-indirect branch instructions, such as jalr, to invoke

functions in a position-independent manner. For example, when calling a function, GCC stores the base address

of the Global Offset Table (GOT) in the gp register, and uses it to calculate the function addresses at runtime. In

contrast, Clang uses the s0 or v0 register to store such base addresses. This subtle difference confuses IDA Pro

and makes it fail to obtain the base address of the GOT; thus, it cannot compute the target addresses of indirect

branches.

Moreover, IDA Pro sometimes generates incomplete CFGs. When there is a switch statement, compilers often

make a table that stores a list of jump target addresses. However, IDA Pro often failed to correctly identify the

number of elements in the table, especially on ARM architecture, where switch tables can be placed in a code

segment. Sometimes, switch tables are located in between basic blocks, and it is more difficult to distinguish them.

The problem worsens when handling MIPS binaries compiled for Clang with PIC because switch tables are

typically stored in a read-only data section, which can be referenced through a GOT. Therefore, if IDA Pro cannot

fully analyze the base address of the GOT, it also fails to identify the jump targets of switch statements.

As we manually analyze the errors, we may have missed some. Systematically finding such errors is a difficult

task because the internals of many disassembly tools are not fully disclosed, and they differ significantly. One may

extend the previous study [48] to further analyze the errors of disassembly tools and extracted features, and we

leave this for future studies.

During the analysis, we found that IDA Pro also failed to fetch some function names if they have a prefix

pre-defined in IDA Pro, such as off_ or sub_. For example, it failed to fetch the name of the off_to_chars function

in the tar package. We used IDA Pro v6.95 in our experiments, but we found that its latest version (v7.5) does not

have this issue.

5.7.2 Diversity of Compiler Back-ends

From §5.5.1, the characteristics of binaries largely vary depending on the underlying compiler back-end. Our

study reveals that GCC and Clang emit significantly different binaries from the same source code.

First, the number of basic blocks for the two compilers significantly differs. To observe how the number

changes depending on different compiler options and target architectures, we counted the number for the NORMAL

dataset. Figure 5.4 illustrates the number of functions and basic blocks in the dataset for selected compiler options

and architectures (see §5.8 for details). As shown in the figure, the number of basic blocks in binaries compiled

with Clang is significantly larger than that in binaries compiled with GCC for O0. We figured out that Clang inserts

dummy basic blocks for O0 on ARM and MIPS; these dummy blocks have only one branch instruction to the next

block. These dummy blocks are removed when the optimization level increases (O1) as optimization techniques in

Clang merge such basic blocks into their predecessors.

In addition, the two compilers apply different internal techniques for the same optimization level, while they

express the optimization level with the same terms (i.e., O0–O3 and Os). In particular, by analyzing the number of

caller and callee functions, we discovered that GCC applies function inlining from O1, whereas Clang applies it

from O2. Consequently, the number of functions for each compiler significantly differs (see the number of functions

in O1 for Clang and that for GCC in Figure 5.4).
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Figure 5.4: Final number of functions and basic blocks in NORMAL.

Moreover, we discovered that two compilers internally leverage different function-level code for specific

operations. For example, GCC has functions, such as __umoddl3 in libgcc2.c or __aeabi_dadd in ieee754-df.S,

to optimize certain arithmetic operations. Furthermore, on x86, GCC generates a special function, such as

__x86.get_pc_thunk.bx, to load the current instruction pointer to a register, whereas Clang inlines this procedure

inside the target function. These functions can largely affect the call-related features, such as the number of control

transfer instructions or that of outgoing calls. Although we removed these compiler-specific functions not to include

them in our experiments (§5.3.2), they may have been inlined in their caller functions in higher optimization levels

(O2–O3). Considering such functions took approximately 4% of the identified functions by IDA Pro, they may have

affected the resulting features.

Similarly, the two compilers also utilize different instruction-level code. For example, in the case of move

instructions for ARM, GCC uses conditional instructions, such as MOVLE, MOVGT, or MOVNE, unless the optimization

level is zero (O0). In contrast, Clang utilizes regular move instructions along with branch instructions. This

significantly affects the number of instructions as well as that of basic blocks in the resulting binaries. Consequently,

in such special cases, the functions compiled using GCC have a relatively smaller number of basic blocks compared

with those using Clang.

Finally, compilers sometimes generate multiple copies of the same function for optimization purposes. For

example, they conduct inter-procedural scalar replacement of aggregates, removal of unused parameters, or

optimization of cache/memory usage. Consequently, a compiled binary can have multiple functions that share

the same source code but have different binary code. We found that GCC and Clang operate differently on this.

Specifically, we discovered three techniques in GCC, which produce function copies with special suffixes, such as

.part, .cold, or .isra. For instance, for the get_data function of readelf in binutils (in O3), GCC yields three

copies with the .isra suffix, while Clang does not produce any of such functions. Similarly, for the tree_eval and

expr_eval functions in bool (in O3), GCC produces two copies with the .cold suffix, but Clang does not. Although

we selected only one of such copies in our experiments to avoid biased results (§5.3.2), the other copies can still

survive in their caller functions by inlining.
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Table 5.10: Number of functions and basic blocks in the NORMAL dataset for each compiler option.

Options # of Functions # of Basic Blocks

Comp.∗ Arch Bit O0 O1 O2 O3 O0 O1 O2 O3

Clang arm 32 35,610 35,638 26,325‡ 26,210 921,181† 422,807 490,029 512,890
GCC arm 32 35,798 28,817‡ 28,270 26,755 561,575 451,965 450,850 523,404

Clang arm 64 35,612 35,637 26,106 26,005 897,892 466,108 555,294 584,098
GCC arm 64 35,790 28,701 28,155 26,605 566,364 490,574 488,070 576,724

Clang mips 32 35,723 35,741 26,221 26,130 933,529 470,923 547,755 583,302
GCC mips 32 35,898 28,832 28,311 26,778 580,432 552,430 548,533 634,923

Clang mips 64 35,679 35,701 26,222 26,095 921,484 460,491 534,209 569,074
GCC mips 64 35,775 28,732 28,218 26,638 560,243 547,273 533,655 618,634

Clang mipseb 32 35,721 35,741 26,217 26,136 933,654 470,795 547,752 583,189
GCC mipseb 32 35,895 28,831 28,305 26,775 580,544 554,791 549,768 635,195

Clang mipseb 64 35,676 35,700 26,220 26,093 922,077 460,531 534,528 569,063
GCC mipseb 64 35,772 28,728 28,208 26,635 560,230 547,265 533,678 618,663

Clang x86 32 35,466 35,484 25,974 25,878 692,755 479,383 575,554 609,008
GCC x86 32 35,602 28,543 28,476 27,074 562,037 501,925 503,681 580,059

Clang x86 64 34,127 34,202 25,593 25,482 640,058 444,199 551,809 581,622
GCC x86 64 35,837 28,803 28,749 27,308 567,578 499,713 503,899 592,185

∗ We show the numbers for GCC v8.2.0 and Clang v7.0 for clear comparison.
† Clang inserts dummy basic blocks for the O0 option on ARM and MIPS.
‡ GCC starts function inlining from O1, but Clang does from O2.

In summary, the diversities of compiler back-ends can largely affect the performance of BCSA, by making the

resulting binaries divergent. Here, we introduced the major issues we discovered. We encourage further studies to

investigate the implication of detailed options in each optimization level across different compilers.

5.7.3 Architecture-Specific Code

When manually inspecting failures, we found that some packages have architecture-specific code snippets

guarded with conditional macros such as #if and #ifdef directives. For example, various functions in OpenSSL,

such as mul_add and BN_UMULT_HIGH, are written in architecture-specific inline assembly code to generate highly

optimized binaries. This means that a function may correspond to two or more distinct source lines depending on

the target architecture.

Therefore, instruction-level presemantic features can be significantly different across different architectures

when the target programs have architecture-specific code snippets, and one should consider such code when

designing cross-architecture BCSA techniques.

5.8 Additional Results for Compiler Optimization

One of the popular goals in BCSA is to identify similar functions compiled from the same source but with

different architectures or compile options. However, as shown in §5.5.1, compiler optimization is a significant

factor that affects the presemantic features of the resulting binary code. Moreover, diversities in the implementation

logic in each compiler also increase the implication of optimization (§5.7.2). In this section, we detail the number

of functions and basic blocks for each compiler option and further discuss them.

Table 5.10 presents the number of functions and basic blocks in the NORMAL dataset. Here, we show the

numbers for the latest version of GCC and Clang, which is v8.2.0 and v7.0, respectively, for comparison. For both

compilers, the number of functions significantly decreases for higher optimization levels due to function inlining.
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Meanwhile, the number of basic blocks does not decrease, as basic blocks can survive in caller functions although

function inlining is applied. The number even increases as the optimization level increases from O2 to O3 for both

compilers. By analyzing the cases, we confirmed that one possible reason is loop unrolling, which unwinds the

loops and generates multiple copies of basic blocks. Consequently, the number of basic blocks for O3 reaches

higher than that for O2.

In this chapter, we have described multiple optimization issues that significantly affect the resulting binary

code and presemantic features. However, we believe that there exist remaining issues for detailed optimization

techniques. Therefore, we conclude by encouraging further studies to investigate the implication of detailed options

in each optimization level across different compilers.

5.9 Discussion

Our study identifies several future research directions in BCSA. First, many BCSA papers have focused on

building a general model that can result in stable outcomes with any compiler options. However, one could train a

model targeting a specific set of compiler options, as shown in our experiment, to enhance their BCSA techniques.

It is evident from our experiment’s results that one can easily increase the success rate of their technique by inferring

the compiler options used to compile the target binaries. There exists such an inference technique [250], and

combining it with existing BCSA methods is a promising research direction.

Second, there are only a few studies on utilizing decompilation techniques for BCSA. However, our study

reveals the importance of such techniques, and thus, invites further research on leveraging them for BCSA. One

could also conduct a comprehensive analysis on the implication of semantic features along with decompilation

techniques.

Additionally, we investigated fundamental presemantic features in this study. However, the effectiveness of

semantic features is not well-studied yet in this field. Therefore, we encourage further research on investigating

the effectiveness of semantic features along with other presemantic features that are not covered in the study. In

particular, as many recent studies have been adopting NLP techniques, inspecting their effectiveness would be

another essential study.

Our scope is limited to a function-level analysis (§5.4.1). However, one may extend the scope to handle

other BCSA scenarios to compare binaries [174, 63, 147] or a series of instructions [154, 177, 152]. Additionally,

one can extend our approach for various purposes such as vulnerability discovery [54, 71, 55, 63, 179, 251, 148],

malware detection [66, 252, 65, 253, 254, 255, 256], library function identification [204, 257, 258, 191, 259, 260],

plagiarism/authorship detection [68, 202, 261], or patch identification [262, 263, 264]. However, extending our

work to other BCSA tasks may not be directly applicable. This is because it requires additional domain knowledge

to design an appropriate model that fits the purpose and careful consideration of the trade-offs. We believe that the

reported insights in this study can help this process.

Recall from Chapter 2, we did not intend to completely survey the existing techniques, but instead, we focused

on systematizing the fundamental features used in previous literature. Furthermore, our goal was on investigating

underexplored research questions in the field by conducting a series of rigorous experiments. For a complete survey,

we refer readers to the recent survey on BCSA [265].

Finally, because our focus is on comparing binaries without source code, we intentionally exclude similarity

comparison techniques that require source code. Nevertheless, it is noteworthy that there has been plentiful literature

on comparing two source code snippets [266, 267, 268, 269, 270, 271, 272, 273, 274, 195] or comparing source

code snippets with binary code snippets [275, 276, 277].
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5.10 Conclusion

We studied previous BCSA literature in terms of the the features and benchmarks used. We discovered

that none of the previous BCSA studies used the same benchmark for their evaluation, and that some of them

required manually fabricating the ground truth for their benchmark. This observation inspired us to develop

BINKIT, the first large-scale public benchmark for BCSA, along with a set of automated build scripts. Additionally,

we developed a BCSA tool, TIKNIB, that employs an interpretable model. Using our benchmark and tool, we

answered less-explored research questions regarding the syntactic and structural BCSA features. Several elementary

features have been shown to be robust across multiple architectures, compiler types, compiler versions, and even

intra-procedural obfuscation. Further, we proposed potential strategies for enhancing BCSA. We conclude by

inviting further research on BCSA using our findings and benchmark.
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Chapter 6. Towards Large-Scale IoT Vulnerability Analysis with BCSA

Detecting previously known vulnerabilities in a different device is a common occurrence in the IoT ecosystem.

For example, CVE-2018-10106, a permission bypass vulnerability discovered in 2018 from D-Link wireless

routers, has persisted in recent devices over the years (e.g., CVE-2018-10106, CVE-2019-17506, CVE-2019-20213,

CVE-2020-9376). Even the same vulnerability can be found in devices from different vendors; for instance,

CVE-2018-7034 is found in TRENDnet devices. This known vulnerability issue often stems from the absence of

secure development standards. To be specific, many IoT vendors lack an internal policy or process for developing

secure software. As a result, they often 1) manage the versions of their devices and source code improperly, or 2)

copy and paste buggy code without validating it. As a result, many IoT devices share similar/identical vulnerabilities

and are continuously exploited by them [7, 8, 9, 10].

To identify such known vulnerabilities, emulated-based analysis can be used. They can identify the same

(or similar) vulnerabilities in different devices by emulating firmware images of target devices and running PoC

exploits of previously known vulnerabilities. Although this approach does not generate false positives, achieving

successful firmware emulation requires overcoming obstacles, such as handling multiple architectures (e.g., ARM,

MIPS, PowerPC, Hexagon) or resolving dependency issues in various peripherals (e.g., Camera, LED, MMIO

access). Furthermore, it takes a long time to emulate the firmware and send requests for vulnerability testing. On the

other hand, similarity-based analysis can be adopted. This approach extracts signatures or distinguishable patterns

from previously known vulnerabilities and then searches for them in target firmware images. While this approach

may generate false positives, it is significantly more scalable than the former approach (i.e., emulation-based

analysis) in IoT vulnerability analysis.

Scalability is critical for addressing known vulnerabilities in a large number of IoT devices. Therefore,

we chose the latter approach (i.e., similarity-based analysis) and investigated its effectiveness in analyzing IoT

vulnerabilities using BCSA. We began by establishing a ground truth dataset, which we refer to as FIRMKIT;1

FIRMKIT contains 1,142 firmware images of IoT devices, as well as addresses of 323 vulnerable functions. Then,

we searched for BCSA tools to run on this dataset for analysis. However, none of the existing tools were readily

available for this analysis, as they released neither their source code nor datasets. Therefore, we leveraged our

previously developed tool, TIKNIB, to conduct our analysis and confirmed the effectiveness of BCSA in IoT

vulnerability analysis. Additionally, we discovered several findings during our analysis that will aid future research

in this field. This chapter details 1) how we used BCSA to conduct practical IoT vulnerability analysis and 2) the

results of our experiments.

6.1 Existing Approaches of BCSA-based IoT Vulnerability Analysis

6.1.1 Problems of Existing Studies

During our literature study on BCSA, we found a prominent research trend in existing studies of vulnerability

analysis. While BCSA is promising in discovering vulnerabilities [70, 58, 177, 179, 182, 57, 54, 71, 55, 56], only

a few existing studies focused on IoT vulnerability analysis. In practice, only five of the 43 BCSA studies that we

studied in Chapter 5 attempted to analyze multiple firmware images. Moreover, even these papers have two critical

problems as follows.

1https://github.com/SysSec-KAIST/FirmKit
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First, the current BCSA studies on IoT vulnerability analysis are limited in scope. As the firmware of

IoT devices contains a variety of programs to perform their intended tasks, vulnerabilities can be discovered in

any of those programs. For example, vulnerabilities can appear in 1) libraries or utility binaries (e.g., OpenSSL,

wget, bash, vsftpd), or 2) custom binaries (e.g., CGI binaries). However, the majority of existing studies have

focused on analyzing the former case, namely, vulnerabilities in libraries or utility binaries. None have focused on

analyzing vulnerabilities in custom binaries. This trend of ignoring custom binaries may stem from the difficulties

in establishing their dataset. In the case of libraries or utility binaries, because their source code is available publicly,

their dataset can be established by compiling their source code with various compiler options and architectures. As

a result, multiple samples of a target vulnerable function can be obtained and used to train a model for conducting

BCSA. On the other hand, the source code for custom binaries is typically not available due to vendor restrictions.

Therefore, establishing a vulnerability dataset for custom binaries requires a significant amount of effort for manual

investigation.

Furthermore, we discovered that none of the existing BCSA studies provide tools that are readily applicable

to IoT vulnerability analysis. Only 10 of the 43 studies released their source code, and only two of them [55, 56]

support the ARM and MIPS architectures, which are used in the majority of IoT devices. Moreover, upon analyzing

the source code for these two tools, we discovered that they lack complete source code, necessitating additional

effort to make them run in practice. Therefore, conducting practical IoT vulnerability analysis using existing tools

is not trivial.

6.1.2 Motivating Example using VulSeeker

While existing tools have a number of limitations, they may be effective in analyzing IoT vulnerabilities if we

make them run in practice. To explore their effectiveness, we examined the performance of the state-of-the-art

tool VulSeeker [56]. Although VulSeeker did not provide complete source code, it did provide a partial result of

identifying a known vulnerability on a Linksys router; thus, we can infer VulSeeker’s effectiveness based on this

result. VulSeeker targeted CVE-2015-1791, a race condition vulnerability in OpenSSL. To build their dataset, the

authors compiled a vulnerable version of OpenSSL, v1.0.1f, with a variety of compiler options and architectures.

These include 48 combinations of six architectures (x86, ARM, MIPS at 32 and 64 bits), two compilers (GCC

v4.9.4 and v5.5.0), and four optimization levels (O0–O3). Then, for each compiled version of the vulnerable

function, they employed their tool to perform the search task. Specifically, they measured the similarity score

between the vulnerable functions they compiled and the target firmware image’s functions. This results in 48

similarity scores for each function in the firmware. They then averaged these scores and sorted the results in

descending order. Consequently, VulSeeker detected the vulnerable function at top-21 in the target firmware.

To further investigate this result, we repeated the same experiment using our BCSA tool TIKNIB with

presemantic features, which we developed in Chapter 5. Notably, TIKNIB ranked the vulnerable function as the

first, i.e., TIKNIB detected it at top-1. From this example, we noticed that the state-of-the-art tool may not be

sufficient to analyze IoT device vulnerabilities in practice. In this regard, we conducted an empirical study to

determine how BCSA can be applied to practical IoT vulnerability analysis.

6.2 Enabling Practical Large-Scale IoT Vulnerability Analysis

To apply BCSA to IoT vulnerability analysis and evaluate its practical utility, we employed our interpretable

model, TIKNIB, and the presemantic features described in Chapter 5. For this analysis, we mainly focused on

vulnerabilities in custom binaries, on which none of the previous BCSA studies have investigated. We selected
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Table 6.1: Summary of FIRMKIT.

Linux-based
IoT Devices

Smartphone
Baseband

# of Firmware Images 1,124 18
# of Functions 52,086,995 1,405,959

# of Command Injection (Custom) 98 (8) ·
# of Information Leak (Custom) 162 (6) ·
# of Buffer Overflow (Custom) 7 (5) 38 (3)
# of Uninitialized Pointer Dereference (Custom) · 18 (1)

Total # of Vulnerable Functions in Custom Binaries 267 (19) 56 (4)

The unique number of vulnerabilities is indicated in the parentheses.

to analyze the firmware images of wireless routers and IP cameras (used in Chapter 3) and those of smartphone

basebands (used in Chapter 4). Using these firmware images, we analyzed vulnerabilities in 1) simple custom

binaries, such as CGI binaries in wireless routers and IP cameras, and 2) complex custom binaries, such as monolithic

firmware binaries in smartphone basebands. Because there is no ground truth dataset for the vulnerabilities in

these firmware images, we had to establish one first. Then, using our heuristic knowledge, i.e., our experience in

analyzing IoT device binaries, we developed effective features. Lastly, we investigated the efficacy of BCSA by

utilizing TIKNIB and these heuristic features.

6.2.1 Establishing Ground Truth Dataset (FIRMKIT)

To build the ground truth dataset, dubbed FIRMKIT, we manually marked the addresses of vulnerable functions

identified in our previous studies described in Chapter 3 and Chapter 4. The ground truth dataset is summarized

in Table 6.1. The numbers in parentheses indicate the number of unique vulnerabilities. In the case of Linux-

based IoT devices, such as wireless routers and IP cameras, because we discovered the vulnerabilities through

emulation-based dynamic analysis, we do not know their function addresses. Therefore, for each vulnerability,

we manually analyzed the binaries in the firmware images using IDA Pro [101] and obtained the addresses of the

vulnerable functions. We excluded functions that IDA Pro was unable to analyze. As a result, the final number

of vulnerabilities differs from the number discovered in Chapter 3. On the other hand, because we manually

discovered the vulnerabilities in the firmware binaries of smartphone basebands, we already know their addresses.

Using this information, we constructed our ground truth dataset.

6.2.2 Developing Heuristic Features

We randomly selected one sample for each unique vulnerability and queried it in each firmware image by

employing TIKNIB with the presemantic features. Then, we determined the rank of the vulnerable function in the

firmware in descending order of similarity score. The result was not surprising as only 52.81% of vulnerabilities

in Linux-based IoT devices were detected at top-1, i.e., ranked at the first position. In the case of smartphone

baseband, TIKNIB detected only 64.29% at top-1.

To improve the performance for practical analysis, we looked into failure cases of vulnerability discovery and

discovered two major issues. First, because we used a single sample for each unique vulnerability, ground truth

functions compiled with a different architecture than the input function showed low similarity scores. For example,

when we searched for CVE-2015-2051, a command injection vulnerability in D-Link routers’s URL parsing, we

queried a sample function compiled for the ARM architecture in our dataset. The average rank of ground truth

functions in ARM-based firmware images was 1.75, whereas those in MIPS-based firmware images was over 1,000.
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By analyzing these cases, we discovered that the ARM and MIPS architectures behave differently when

calling external functions. More precisely, in binaries compiled for the ARM architecture, library functions such as

memset and getenv are invoked via a wrapper function in the .plt section. On the other hand, library functions

in MIPS-compiled binaries are invoked directly without the use of a wrapper function. Consequently, features

associated with function calls, such as the number of callees, the number of imported callees, or the size of the

control flow graph, vary by architecture.

Second, owing to the version difference among the firmware images, newer images have different implementa-

tions than older images. For instance, in the case of CVE-2017-5521, a vulnerability in Netgear devices that allows

for information leakage, newer devices include an additional routine that verifies the timestamp of the last recovery

within the vulnerable function. Therefore, the majority of the features associated with this addition routine were

affected severely.

To address these two issues, we developed features that are resistant to changes in architecture and versioning.

We drew on our experience in analyzing IoT device binaries. Through empirical analysis of diverse binaries in our

previous studies, we discovered that IoT binaries frequently contain function names. Thus, rather than comparing

abstracted numeric features, we can directly compare caller and callee names. For example, we can use the names

of internal and library functions instead of the numbers of callers and callees. Additionally, we discovered that

data strings contained in IoT binaries often contain useful information. CGI binaries include hard-coded strings

for parsing URLs, such as HTTP, POST, answer, or password. Therefore, we can use these strings to compute the

similarity score.

Based on these observations, we developed two heuristic features that compare 1) the strings to which the

function refers and 2) the names of the callee functions. To determine string similarity, we used a Jaccard index as

follows. Consider the case where we have two functions, A and B. Then, using a whitespace delimiter, we split all

strings that function A refers to and union the words into a single set called Astr. Similarly, we obtain a set of words

for all strings referred to by function B, which we call Bstr. Then, we compute the string similarity between these

two functions in the following manner:

Jaccard(Astr,Bstr) =
|Astr ∩Bstr|
|Astr ∪Bstr|

(6.1)

To compare the callees of two functions, A and B, we refer to the set of callee names in function A as Astr and

the set of callee names in function B as Bstr. Then, using the same approach described above, we calculate their

Jaccard index.

After computing the similarity score for each of these two heuristic features, we averaged them against the

score computed by running naive TIKNIB, i.e., TIKNIB with presemantic features.

6.3 Evaluation

As described previously, we integrated heuristic and presemantic features into TIKNIB Using this TIKNIB,

we conducted a series of experiments to address the following questions:

• Q1: How do well-systematized heuristics identify vulnerabilities in simple custom binaries (i.e., CGI binaries

in Linux-based IoT devices)?

• Q2: How do well-systematized heuristics detect vulnerabilities in complex custom binaries (i.e., smartphone

baseband firmware binaries)?

• Q3: How do well-systematized heuristics identify vulnerabilities in open-source packages (i.e., OpenSSL

libraries in Linux-based IoT devices)?
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Table 6.2: Top-k results of identifying vulnerabilities in FIRMKIT using TIKNIB.

Top-k
Linux-Based IoT Devices Smartphone Cellular Baseband

w/o Heuristic Features w/ Heuristic Features w/o Heuristic Features w/ Heuristic Features

1 141 / 267 (52.81%) 263 / 267 (98.50%) 36 / 56 (64.29%) 48 / 56 (85.71%)
5 167 / 267 (62.55%) 263 / 267 (98.50%) 41 / 56 (73.21%) 49 / 56 (87.50%)
10 182 / 267 (68.16%) 266 / 267 (99.63%) 41 / 56 (73.21%) 49 / 56 (87.50%)
50 196 / 267 (73.41%) 266 / 267 (99.63%) 42 / 56 (75.00%) 50 / 56 (89.29%)

100 196 / 267 (73.41%) 267 / 267 (100.0%) 44 / 56 (78.57%) 52 / 56 (92.86%)

• Q4: Is BCSA capable of discriminating between vulnerable and benign functions effectively?

6.3.1 Identifying Vulnerabilities in Custom Binaries

To test Q1 and Q2, we randomly selected one sample for each unique vulnerability in FIRMKIT (Table 6.1)

and queried it against each firmware image. We measured the top-k similarity scores between the input vulnerable

function and each function in the firmware image. As shown in Table 6.2, the heuristic features developed in §6.2.2

significantly improved the performance of original TIKNIB only with presemantic features, thereby supporting

both Q1 and Q2. Notably, the majority of vulnerabilities were detected at the top-1 level of each firmware image,

supporting Q4.

The detailed results of running TIKNIB with heuristic features against Linux-based IoT devices, such as

wireless routers and IP cameras, are shown in Table 6.3. For each unique vulnerability, we selected a sample

vulnerable function from the firmware image whose index is shown in parentheses, as shown in the first column

of the table.2 The second column in Table 6.3 indicates the range of similarity scores for the top-1 functions in

the firmware images. The third column in Table 6.3 denotes the number of functions discovered by TIKNIB, and

the fourth column indicates whether these functions are vulnerable (i.e., V), patched (i.e., P), not vulnerable (i.e.,

N), or unknown (i.e., U). To determine this, we manually analyzed and validated each function and binary. We

mark functions as not vulnerable if their binaries do not contain a function related to the input vulnerability, and

as unknown if the type of functions could not be determined. In the majority of cases, our system successfully

distinguished vulnerabilities from other benign functions, thereby supporting Q4. Notably, our BCSA-based

approach (i.e., TIKNIB with heuristic features) discovered more vulnerabilities than an emulation-based approach

(i.e., FIRMAE); compare the numbers with and without parentheses in the third column.

In the following, we summarize our findings from analyzing the results along with example cases.

(1) BCSA is capable of identifying vulnerabilities and their associated patches.

We discovered that BCSA is capable of identifying vulnerabilities as well as their patches. Here, we will

demonstrate two examples of vulnerabilities. CVE-2016-6277 is a command injection vulnerability in NETGEAR

routers caused by an incorrect URI parsing routine. This vulnerability is easily patched by including a routine that

checks for invalid characters in URIs. One may implement a blocklist that contains frequently exploited characters

for shell command injection. In practice, we discovered that patches for this vulnerability are implemented by

checking for special characters such as ’;’, ’‘’, ’$’, and ’..’. Notably, all vulnerable functions were ranked

higher than patched functions, and the other functions unrelated to the vulnerability were ranked lower than

the patched ones. This result demonstrates that TIKNIB with the heuristic features successfully distinguished

vulnerable, patched, and unrelated functions, thereby supporting both Q1 and Q4.

2For more details, please refer to https://github.com/pr0v3rbs/FirmAE.
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Table 6.3: Similarity analysis results of example vulnerabilities in Linux-based IoT devices.
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Binary

CVE-2016-6277
(104)

0.95–1.00 29 (3) V X · · · · · · X · · /usr/sbin/httpd
0.5–0.95 40 (-) P X · · · · · · X · · /usr/sbin/httpd

CVE-2015-2051
(619)

0.81–1.00 5 (4) V · X · · · · · X · · /htdocs/cgibin
0.68–0.73 25 (-) P · X · · · · · X · · /htdocs/cgibin

0.58–0.75 6 (5) V · X X · · · · · X · /htdocs/cgibin
0.53–0.59 3 (-) P · X · · · · · · X · /htdocs/cgibin

0.68 1 (-) P · X · · · · · · · X /htdocs/cgibin
0.58–0.69 15 (14) V · X · · · · · · · X /htdocs/cgibin

0.53 9 (-) P · X · · · · · · · X /htdocs/cgibin
0.49–0.53 17 (-) P · X · · · · · · X X /usr/sbin/upnpkits

CVE-2017-7240
(118)

0.95–1.00 3 (3) V · · · X · · · · X · /usr/sbin/httpd
0.54–0.83 6 (-) N · · · X · · · · X · /usr/sbin/httpd
0.50–0.53 23 (-) N · · · · X X X · X X /usr/sbin/httpd

CVE-2018-10106
(2)

0.99–1.00 45 (42) V · X X · · · · · X X /htdcos/cgibin
0.48–0.86 42 (41) V · X · · · · · X X X /htdocs/cgibin
0.55–0.84 5 (-) P · X · · · · · X X X /htdocs/cgibin

CVE-2014-2962
(510)

0.96–1.00 2 (2) V · · · X · · · · · X /usr/www/cgi-bin/webproc
0.66–0.86 13 (0) V∗ X · X X · · · · · X /usr/www/cgi-bin/webproc

0.53 1 (-) P X · · · · · · · X · /usr/www/cgi-bin/webproc

CVE-2020-15893
(2)

0.86–1.00 43 (40) V · X X · · · · · X X /htdocs/cgibin
0.96 1 (-) P · · X · · · · · X X /htdocs/cgibin
0.85 17 (12) V · X · · · · · · X X /usr/sbin/upnpkits
0.82 7 (7) V · X · · · · · X · · /htdocs/cgibin

0.74–0.81 42 (-) P · X · · · · · X X X /htdocs/cgibin
0.52 1 (1) V? · X · · · · · · · X /htdocs/cgibin

CVE-2016-11021
(804)

0.97–1.00 11 (1) V · X · · · · · · X · /bin/alphapd
0.97 2 (2) V · X · · · · · · X · /bin/goahead

0.67–0.75 21 (-) P · X X · · · · · X · /bin/alphapd
0.60–0.67 9 (0) V∇ · X · · · · · · X · /bin/alphapd

0.59 1 (-) P · · X · · · · · X · /bin/alphapd
0.50–0.59 18 (-) N · X · · · · · · X · /bin/alphapd

CVE-2017-6077
(186)

0.85–1.00 2 (2) V X · · · · · · · · X /usr/sbin/httpd
0.5–0.85 1 (0) V� X · · · · · · · · X /usr/sbin/httpd

CVE-2012-2765
(37)

0.72–1.00 7 (3) V · · · X · · · · X · /usr/sbin/httpd
0.66 1 (-) P · · · X · · · · X · /usr/sbin/httpd
0.58 2 (0) V · · · X · · · · X · /usr/sbin/httpd
0.53 1 (-) N · · · · · · X · X · /usr/sbin/httpd

Linksys Vuln.
(53)

0.72–1.00 10 (1) V♥ · · · · · · X · X · /usr/sbin/httpd
0.53–0.64 7 (-) P · · · · · · X · X · /usr/sbin/httpd

CVE-2017-5521
(99, Stage 1)

0.98–1.00 40 (26) V X · · · · · · X · · /usr/sbin/httpd
0.74–0.83 73 (-) P X · · · · · · X · · /usr/sbin/httpd

0.79 2 (0) V∗ X · · · · · · X · · /usr/sbin/httpd
0.51–0.52 11 (9) V X · · · · · · · X · /usr/sbin/httpd

0.51–0.59 171 (-) U♠ X X X X X X X X X X 22 different binaries

CVE-2017-5521
(99, Stage2)

0.98–1.00 79 (26) V X · · · · · · X · · /usr/sbin/httpd
0.76–0.92 36 (-) P X · · · · · · X · · /usr/sbin/httpd

0.74–0.78 24 (6) V X · · · · · · · X · /usr/sbin/httpd
0.68–0.73 9 (-) P X · · · · · · · X · /usr/sbin/httpd
0.51–0.53 3 (-) N X · · · · · · · · X /usr/sbin/httpd
0.51–0.51 1 (-) P X · · · · · · · X · /usr/sbin/upnpd

0.51–0.51 14 (3) V X · · · · · · · X · /usr/sbin/upnpd

Total Vulnerabilities 442 (253)

† V: vulnerable, P: patched, N: not vulnerable (i.e., no vulnerable functionality), U: unknown.
‡ All architectures are 32-bit based.
↑ The number in parentheses represents the index of input firmware images. For more details, please refer to https://github.com/pr0v3rbs/FirmAE.
⇑ We considered only the top-1 function in each firmware image.
⇓ The number in parentheses denotes the number of vulnerable functions identified by FIRMAE as the ground truth.
∗ These functions are potentially vulnerable. Due to emulation failure, we were not able to determine whether these functions are actually called at runtime.
? Because these functions have a dedicated debugging routine, the similarity score is low even though they are vulnerable.
∇ The binaries containing these functions are statically compiled, which degraded the similarity score.
� These functions get an additional parameter for VPN.
♥ Five of 10 vulnerable functions are actually vulnerable. The remaining five are not invoked because their function calls were removed by the developers.
♠ The binaries containing these functions are included in older firmware images; thus, they use different implementations.
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(2) BCSA can identify and distinguish vulnerabilities against different architectures and binaries.

CVE-2015-2051 is another command injection vulnerability in D-Link routers. As with CVE-2016-6277, this

vulnerability originates from an incorrect URI parsing routine. We discovered that the devices affected by this

vulnerability use three different architectures: 32-bit ARM, MIPS, and MIPSeb. For each architecture, our system

successfully identified vulnerable functions and also distinguished them from patched and other benign functions.

Notably, the vulnerability that we queried was in a binary located at /htdocs/cgibin. Our system, however,

detected functions associated with this vulnerability in a different binary located at /usr/sbin/upnpkits with a

similarity score of 0.49–0.53, as shown in the last row of CVE-2015-2051 in Table 6.3. Although these functions

have been patched, this result demonstrates that BCSA is capable of successfully identifying vulnerabilities against

different binaries.

(3) BCSA can detect differences in compilation environments.

CVE-2017-7240 and CVE-2012-2765 are two examples of vulnerabilities presenting BCSA’s ability to detect

differences in compilation environments. CVE-2017-7240 is a directory traversal vulnerability in Belkin devices’

URL parsing. When a CGI binary parses a URL, it checks a list of allowed file types to ensure that the files are

not accessible to an unauthorized user. However, devices that contain this vulnerability allow any file type, i.e.,

accept ’∗’; thus, any unauthorized user can retrieve any files on the devices. Typically, the allowed list is located in

the data section of a CGI binary. Therefore, by conducting this experiment, we can assess BCSA’s capability for

detecting vulnerabilities that originate in the data section.

To discover this vulnerability, we queried the function that refers to the vulnerable allowed list. Devices that

are not vulnerable have a similar function for checking an allowed list. They do, however, use a different allowed

list that accepts specific file types but not all. The functions that use the vulnerable allowed list were ranked higher

than those that use this non-vulnerable allowed list. When modifying the allowed list, developers may also have

modified other code sections, which eventually varied the resulting binary. As a result, even though the vulnerability

is located in the data section rather than the code section, BCSA can identify the function that refers to this data

section and also differentiate between vulnerable and non-vulnerable functions.

CVE-2012-2765 is another example of a password disclosure vulnerability. This vulnerability originates

from client-side password validation on a login page. When a user enters an ID and a password, the server sends

a password to the client, which is then verified on the client-side. Patching this vulnerability is straightforward,

as the checking routine can simply be moved to the server binary. To identify this vulnerability, we queried the

function that sends the password, in the server binary located at /usr/sbin/httpd. Notably, BCSA successfully

identified both the vulnerable and patched functions, as patching the vulnerability would also change our target

binary during compilation, as in the previous case. These two examples demonstrate that BCSA is capable of

detecting differences in compilation environments.

(4) Identical vulnerabilities frequently appear in different vendors

We discovered that many devices from distinct vendors share an identical vulnerability. For example, when

we queried functions for CVE-2015-2051 and CVE-2018-10106, we identified that both D-Link and TRENDnet

devices contained the same (or similar) vulnerable functions. This demonstrates the possibility that these two

vendors may share the same (or similar) codebase. On the other hand, we found multiple devices that contain

similar functions although the functions are not vulnerable. CVE-2017-7240 affects devices from multiple vendors,

such as Belkin, Asus, ZyXEL, and Linksys. Among these devices, only a few Belkin devices were vulnerable. As a

result, we deduced that IoT device vendors may share the same or similar codebases.
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(5) Recurring vulnerabilities are frequently discovered in newer devices and are assigned multiple CVE
numbers.

We found that older vulnerabilities persist in newer devices, and that some of these vulnerabilities have even

been assigned new CVE numbers. CVE-2018-10106, for example, is a permission bypass vulnerability in D-Link

devices. However, the same vulnerability exists in more recent D-Link devices and has been assigned three distinct

CVE numbers: CVE-2019-17506, CVE-2019-20213, and CVE-2020-9376. The same vulnerability was also

discovered and assigned the name CVE-2018-7034 on TRENDnet devices.

Another example is CVE-2014-2962, for which the initial vulnerability was discovered in 2006. The same

vulnerability has been assigned to D-Link devices as CVE-2006-2337 and CVE-2006-5536, Inca devices as

CVE-2006-5607, Belkin devices as CVE-2014-2962, Zte devices as CVE-2015-7250, Fiberhome devices as

CVE-2017-15647, and Twsz devices as CVE-2017-8770. These findings indicate that many IoT devices share the

same or similar source code, and that IoT developers do not properly manage the versions of device source code.

(6) Certain devices from a single vendor include debugging routines.

During the analysis, we discovered that some devices contain debugging routines that should be removed in

the release version. Such cases may originate from incorrect version management in the development stage. CVE-

2020-15893, for example, is a command injection vulnerability in the parsing of simple service discovery protocol

(SSDP) parameters on D-Link and TRENDnet devices. Among the functions associated with the vulnerability, one

vulnerable function has a lower similarity score than the patched ones, as shown in the last row of CVE-2020-15893

in Table 6.3. Unlike other functions related to this vulnerability including those that have been patched, this one

includes a special debugging routine that invokes the _dtrace() function. As a result, this debugging function had

an effect on the call-related features, resulting in the low similarity score.

When analyzing CVE-2012-2765, we discovered a similar case. CVE-2012-2765 is a information leakage

vulnerability in Belkin devices that is caused by client-side password checking, as previously described. This case

is distinct from CVE-2020-15893 in that the vulnerable function sampled included a debugging routine. Therefore,

two vulnerable functions that lack a debugging routine had lower similarity scores (i.e., 0.58) than the patched

function (i.e., 0.66). As shown in these two examples, when conducting BCSA-based IoT vulnerability analysis,

debugging routines should be considered.

(7) While the majority of binaries are dynamically compiled, some are statically.

While analyzing CVE-2016-11021, we discovered that some of the binaries were statically compiled; however,

all of the other binaries we analyzed were dynamically compiled. CVE-2016-11021 is a command injection

vulnerability in a debugging feature on D-Link and TRENDnet devices. When a binary is statically compiled, all

library functions linked to the binary are inserted into the binary; thus, the inserted functions can affect the binary’s

original functions, most notably during optimization. As discussed in Chapter 5, compiler optimization can have a

significant impact on the resulting BCSA features due to function inlining. Consequently, vulnerable functions in

statically compiled binaries were ranked lower than those in dynamically compiled binaries.

(8) Certain devices include binaries that have been customized from open-source projects

We found that IoT devices frequently use open-source projects to implement their firmware. By analyzing

CVE-2017-7240 on Belkin devices, the vulnerability previously described, we observed that Belkin, Asus, ZyXEL,

and Linksys all use the same URL parsing function. The vulnerability originates from an allowed list that accepts
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any file type. By searching the strings used in the allowed list on the web, we discovered that the firmware

images for these devices were implemented based on DD-WRT, an open-source IoT firmware project. Notably, the

vulnerability exists only in a subset of Belkin devices, and we discovered that those devices had the allowed list

incorrectly customized to accept any file type.

Additionally, when analyzing CVE-2016-11021, a command injection vulnerability discovered in D-Link

and TRENDnet devices, we discovered a similar case. We observed that the majority of the vulnerabilities were

discovered in binaries located at /bin/alphapd, whereas two were discovered in a different binary located at

/bin/goahead, as shown in the CVE-2016-11021 rows in Table 6.3. We discovered that the alphapd binaries were

implemented based on GoAhead, an open-source web server for embedded devices. As the majority of these binaries

were implemented based on older versions of GoAhead, they all inherit the same vulnerability.

(9) BCSA is effective at analyzing patches.

As demonstrated in Table 6.3, BCSA is effective at rapidly identifying vulnerabilities and their patches. Given

that our system successfully identified functions associated with the vulnerability, all that remained was to determine

whether or not the function was vulnerable. This significantly reduced our manual analysis effort. The V and P

values in the fourth column of Table 6.3 denote whether the functions are vulnerable or patched. Additionally, we

discovered that some patches were applied incorrectly or were insufficient to completely eliminate the vulnerability.

The following discusses such cases.

To begin, we discovered that some patches for CVE-2017-5521 had been applied incorrectly. CVE-2017-5521

is a information leakage vulnerability in NETGEAR devices that allows an unauthorized user to obtain the device

ID. One straightforward patch would be adding a routine that verifies the authorized status of a user who sends

requests prior to printing out the device ID. However, we found two patches that had been applied incorrectly.

These patches do verify authorization; however, they simply remove an HTML element on the client-side if a user

is not authorized. Therefore, the device ID transferred from the server can still be exposed to the unauthorized user.

Additionally, when analyzing CVE-2012-2765 from Belkin devices, we found that certain patches were

applied differently even though firmware images were released on the same date. The second and third rows

of Table 6.3 demonstrate that one firmware image was patched while the other two were not, despite the fact that all

three firmware images were released on the same date, February 2018.

Moreover, multiple patch versions were discovered for a single vulnerability. There were three patches

distributed across 17 devices for the Linksys vulnerability, which is a command injection vulnerability for which

we were unable to locate a CVE number. Seven devices were patched by adding a routine to the vulnerable function

that validates input strings; the similarity scores of these patches functions are shown in the second Linksys Vuln.

row of Table 6.3. Meanwhile, as shown in the first Linksys Vuln. row, the vulnerable functions in the remaining 10

devices were not patched. We investigated these vulnerable cases and discovered that, rather than directly patching

the vulnerable function, the developers simply removed the function calls that invoked it. More precisely, two

points invoke the vulnerable function: one before and one after authentication. To eliminate the vulnerability, the

developers used two distinct patches. The first patch removed calls prior to authentication; thus, the vulnerability

can still be exploited via the other function after authentication. Then, the second patch eliminated both points,

thereby eradicating the vulnerability completely. We discovered that two of the 10 firmware images were vulnerable

in practice due to their lack of patching, three were vulnerable after authentication due to the first patch, and five

were patched correctly due to the second patch.

These examples demonstrate BCSA’s capability and effectiveness in patch analysis. Furthermore, even if a

binary contains a vulnerable function, additional analysis is required to determine whether the vulnerability can be

exploited in practice.
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Table 6.4: Top-k results of analyzing OpenSSL vulnerabilities in Linux-based firmware images using TIKNIB.

Top-k
CVE-2014-0160 CVE-2015-1791

w/o Heuristic Features w/ Heuristic Features w/o Heuristic Features w/ Heuristic Features

1 4 / 34 (11.76%) 34 / 34 (100.0%) 252 / 309 (81.55%) 309 / 309 (100.0%)
5 17 / 34 (50.00%) 34 / 34 (100.0%) 284 / 309 (91.91%) 309 / 309 (100.0%)
10 17 / 34 (50.00%) 34 / 34 (100.0%) 293 / 309 (94.82%) 309 / 309 (100.0%)
50 32 / 34 (94.12%) 34 / 34 (100.0%) 294 / 309 (95.15%) 309 / 309 (100.0%)

100 34 / 34 (100.0%) 34 / 34 (100.0%) 294 / 309 (95.15%) 309 / 309 (100.0%)

Table 6.5: Top-k results of analyzing OpenSSL vulnerabilities, including the patched ones, in Linux-based

firmware images using TIKNIB.

Top-k
CVE-2014-0160 CVE-2015-1791

w/o Heuristic Features w/ Heuristic Features w/o Heuristic Features w/ Heuristic Features

1 7 / 222 (3.15%) 215 / 222 (96.85%) 252 / 455 (55.38%) 455 / 455 (100.0%)
5 29 / 222 (13.06%) 215 / 222 (96.85%) 284 / 455 (62.42%) 455 / 455 (100.0%)
10 44 / 222 (19.82%) 222 / 222 (100.0%) 293 / 455 (64.40%) 455 / 455 (100.0%)
50 110 / 222 (49.55%) 222 / 222 (100.0%) 337 / 455 (74.07%) 455 / 455 (100.0%)

100 158 / 222 (71.17%) 222 / 222 (100.0%) 382 / 455 (83.96%) 455 / 455 (100.0%)

(10) BCSA’s performance degrades when the target function’s size is too small.

Although we were unable to observe this from Linux-based IoT devices, it is worth noting that the size of an

input vulnerable function can have a significant effect on BCSA performance. If a target binary contains multiple

small-sized functions, their BCSA features may be indistinguishable. Additionally, in different versions of a target

device, such functions may include an additional routine to a target function that may take a larger portion than the

original code. As a result, the similarity score of these functions can be severely affected.

We observed this case in the firmware binaries of smartphone basebands, where four of 56 vulnerabilities were

not detected within the top-100, as shown in the right part of Table 6.2. Notably, these four vulnerabilities are all

related to a single, identical vulnerability that can result in a buffer overflow. There are six ground truth functions

for this vulnerability. Our system identified two of the six ground truth functions in older devices; however, it

was unable to identify four in newer devices that included an additional routine to support dual-SIM functionality.

Because baseband contains a large number of small functions for processing protocol messages, such a change

may take a larger portion in a function than the original code. As a result, the similarity scores of four ground truth

functions in newer devices were decreased.

6.3.2 Identifying Vulnerabilities in Open-Source Packages

To test Q3, we conducted additional experiments aimed at identifying OpenSSL vulnerabilities in the firmware

images of wireless routers and IP cameras. In these experiments, we also employed TIKNIB equipped with the

heuristic features. We selected CVE-2015-1791 and CVE-2014-0160 as the vulnerabilities to evaluate because

they have been frequently used in previous studies [56, 71, 55, 70, 54, 64]. CVE-2015-1791 is a race condition

vulnerability in the ssl3_get_new_session_ticket() function, while CVE-2014-0160 is an information leakage

vulnerability in the tls1_process_heartbeat() function. As we do not have the ground truth, we first had to

determine the addresses of vulnerable functions in the firmware images. For this, we checked 1) whether a given

firmware image contains a libssl.so binary, and 2) whether the binary’s version is affected by the vulnerability.

To check the binary version, we leveraged version strings inserted into the binary during compilation.

We conducted the experiments using the same methodology as VulSeeker [56], as previously described
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(a) CVE-2014-0160 (34 of 222 functions are vulnerable).
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(b) CVE-2015-1791 (309 of 455 functions are vulnerable).

Figure 6.1: Similarity scores of vulnerable and patched functions in Linux-based firmware images, obtained by

running TIKNIB with heuristic features.

in §6.1.2. We compiled the vulnerable version of OpenSSL (i.e., v1.0.1f) using various compiler options and

architectures, including six architectures (x86, ARM, and MIPS, each at 32 and 64 bits), two compilers (GCC

v4.9.4 and v5.5.0), and four optimization levels (O0–O3). As a result, we were able to obtain 48 samples for each

of the two vulnerabilities. We compared each sample vulnerable function to the functions in each firmware image,

resulting in 48 similarity scores for each firmware function. Then, we calculated the top-k result by averaging these

similarity scores for each function. Table 6.4 shows the top-k result of identifying only the vulnerable functions

from the firmware images, whereas Table 6.5 presents that of identifying the vulnerable functions as well as

their patched ones from the firmware images. In all experiments, TIKNIB with the heuristic features successfully

identified the target functions, corroborating Q3.

Additionally, we compared the similarity scores of vulnerable and patched functions to explore Q4. As

illustrated in Figure 6.1, vulnerable functions (i.e., the red) have a higher similarity score than patched functions

(i.e., the blue), supporting Q4. Meanwhile, in the case of CVE-2015-1791, some of the vulnerable functions have

lower similarity scores than those that have been patched. By investigating them, we discovered that these functions

were either 1) compiled from older versions of OpenSSL, such as v0.9.8k or v0.9.8zc, or 2) statically compiled into

another binary, such as /bin/curl. However, within similar versions of OpenSSL, TIKNIB with heuristic features

successfully distinguished vulnerable functions from patched functions.

6.3.3 Comparison Against State-of-the-Art Techniques

In previous experiments, we have demonstrated the effectiveness of TIKNIB with heuristic features in

analyzing IoT device vulnerabilities. Next, we evaluate our system against state-of-the-art techniques. Among the

43 existing BCSA tools, only two [55, 56] support both ARM and MIPS architectures. They did not, however,

release the complete source code or datasets. As a result, we were unable to directly compare our system to

theirs. Instead, we used the same experimental method as in these two studies, using our dataset and ground truth

information that we created in §6.3.2. More specifically, we queried each sample vulnerable function against all

52M functions in the 1,124 firmware images (Table 6.1). This resulted in 48 similarity scores for each of the 52M

functions. Then, we calculated the top-k result by averaging the similarity scores for each function. Note that this

experimental methodology is different from our previous experiments described in §6.3.1 and §6.3.2. We selected

CVE-2015-1791 as our target in this experiment, which has also been used in previous research [55, 56].

Table 6.6 summarizes the top-k results for the averaged similarity score for all 52M firmware functions.

Though our dataset is distinct from those used in previous studies, our system presented promising results. TIKNIB
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Table 6.6: Top-k results of analyzing all 52M functions in Linux-based firmware images using TIKNIB.

Top-k
Existing Approaches TIKNIB (Our Approach)

Gemini† VulSeeker† O0-O3 Features‡ O2-O3 Features‡ w/ Heuristic Features

1 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
5 2 ( 40%) 3 ( 60%) 5 (100%) 5 (100%) 5 (100%)
10 4 ( 40%) 6 ( 60%) 9 ( 90%) 10 (100%) 10 (100%)
50 36 ( 72%) 41 ( 82%) 19 ( 38%) 46 ( 92%) 50 (100%)

100 75 ( 75%) 83 ( 83%) 50 ( 50%) 82 ( 82%) 100 (100%)

† Only two of 43 BCSA papers that we studied in Chapter 5 support both ARM and MIPS architectures.

We were not able to compare the results directly because they released neither their datasets nor complete

source code. For the purpose of comparison, we present the results stated in their papers.
‡ O2-O3 Features represent the features extracted from the dataset compiled with O2 and O3. As these

features outperforms O0-O3 Features extracted from the dataset compiled with O0–O3, it is highly likely

that the tested firmware images were compiled with O2 or O3.

equipped with heuristic features identified vulnerable functions perfectly in its top-100 result. Notably, TIKNIB

with presemantic features learned from the dataset containing only O2 and O3 binaries performs better than TIKNIB

with those learned from the dataset containing all O0–O3 binaries. This result indicates that a large number of

firmware images were most likely compiled with O2 or O3. Moreover, our system achieved a result comparable to

that of state-of-the-art tools. Note that our goal is not to assert that our approach is superior to these tools, and this

result demonstrates that properly engineered features based on heuristic knowledge (i.e., heuristic features) are

effective in IoT vulnerability analysis.

6.4 Discussion

In this study, we leveraged BCSA for identifying previously known vulnerabilities in IoT devices. Therefore,

this study inherits the discussion points of BCSA described in the previous chapter (Chapter 5). Although TIKNIB

equipped with the heuristic features demonstrated promising results, additional effective features may exist. For

example, as discussed in §5.6, type information can be used as a feature. We encourage further research in this area to

consider recovering debugging information from binary code, such as function types [246, 247, 243, 244, 248, 249].

Additionally, inter-procedural analysis can be used to address compiler optimization issues; function inlining can

severely affect the features that we used. One can also develop effective features for static binaries.

Even if BCSA successfully identifies functions from IoT devices that are associated with a targeted vulnerabil-

ity, additional analysis may be required to determine whether the identified functions are vulnerable. We manually

verified the identified functions in this study; however, one may leverage other promising techniques in various

analysis scopes. For instance, one can run symbolic execution at the function level to verify the vulnerability.

Additionally, one can emulate the target binary (i.e., at the binary level) and perform a dynamic vulnerability check

using PoC scripts. On the other hand, an entire firmware image may need to be analyzed, as vulnerabilities can

spread across multiple binaries. We reserve such promising research topics in the IoT vulnerability analysis for

future work.

6.5 Conclusion

Discovering previously known vulnerabilities in another device is a prominent issue in the IoT ecosystem.

To counter this issue, several studies have focused on developing novel approaches that combine BCSA and

sophisticated machine learning techniques. However, few studies have investigated IoT devices in real-world
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scenarios, and none have examined vulnerabilities in custom binaries, such as CGI binaries. Moreover, there is

no readily available tool for conducting practical analysis. To address this, we established the first large-scale

ground-truth dataset for IoT vulnerability analysis, named FIRMKIT, which contains 1,142 firmware images and

323 vulnerabilities. We discovered that BCSA is effective in practice for scalable IoT vulnerability analysis, and

that simple heuristic features can significantly improve the performance of BCSA. We believe that the findings

from this study will contribute to further research in this field. To encourage further research, we make our datasets

and source code publicly available.

Furthermore, from this study, we learned that many IoT vendors frequently manage their devices’ and source

code’s versions incorrectly, and even copy and paste buggy code without validating it. Our empirical analysis

revealed that many vendors lack an internal policy or process for developing more secure software. As a result,

numerous IoT devices share similar/identical vulnerabilities and are continuously exploited by them. One possible

explanation for such phenomena is that IoT vendors are not financially motivated to secure their software. A

business’s typical objective is to profit from the sale of its products. As a result, after weighing the risk and

probability of a security breach, IoT vendors may conclude that enhancing the security of their devices is not

economically viable. Meanwhile, contemporary software communities are engaged in lively debates about security

economics. For instance, DevSecOps, which stands for development, security, and operations, is a methodology for

integrating security as a shared responsibility throughout the entire information technology lifecycle. We believe

that if IoT vendors take this approach, they will contribute to the IoT ecosystem’s security. In this regard, we invite

further research into security economics to determine how to incentivize IoT vendors to incorporate security into

their software development lifecycle.
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Chapter 7. Thesis Conclusion

Security analysis techniques have made significant advancements in order to secure the IoT ecosystem.

However, many recent techniques are not yet scalable owing to the obscurity and diversity issues underlying the

IoT ecosystem. This immaturity may be a result of a prominent trend in existing academic research; existing

studies focuses primarily on novelty and freshness while ignoring hands-on analysis and engineering efforts (i.e.,

heuristic-based approaches).

In this thesis, we argued that developing and systematizing heuristics based on empirical analysis is both

inevitable and necessary to achieve scalable security analysis of IoT devices. We examined the limitations

of recent approaches to IoT vulnerability analysis and discovered that heuristics can effectively address these

limitations. Heuristics that we developed 1) significantly increased the rate of firmware emulation, 2) successfully

analyzed firmware structures, and 3) successfully identified numerous known vulnerabilities. Additionally, we

demonstrated that the developed heuristics can be transferred to a variety of device types and versions, as many

IoT devices share common codebases. By systematizing the developed heuristics, we successfully tested a total

of 1,256 vulnerabilities from 1,143 firmware images in wireless routers, IP cameras, and smartphone baseband

devices, thereby corroborating our hypothesis: ”While heuristics may appear trivial and not technically novel,

developing and systematizing ’dirty’ heuristics is critical, and it is the last-mile effort required to enable large-scale

vulnerability analysis on the IoT ecosystem.”. We conclude by encouraging further research into developing an

integrated knowledge base for IoT analysis based on empirical investigations, believing that doing so will eventually

secure the IoT ecosystem.
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Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computatorica, vol. 30, pp. 3–19, 2009.

[242] “Themida: Advanced windows software protection system.” [Online]. Available: https://www.oreans.com/

themida.php

[243] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn function type signatures from binaries,”

in Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017, pp.

99–116.

101

http://www.gnu.org/s/parallel
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.capstone-engine.org/
"https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=872867886"
"https://en.wikipedia.org/w/index.php?title=Relative_change_and_difference&oldid=872867886"
http://www.scipy.org/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://clang.llvm.org/docs/CommandGuide/clang.html
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
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