
Improving Large-Scale Vulnerability Analysis
of IoT Devices with

Heuristics and Binary Code Similarity

Dongkwan Kim
School of Electrical Engineering

KAIST
2021.12.07

Advisor: Yongdae Kim

1

Committee Members:
Prof. Yongdae Kim – Chair
Prof. Sang Kil Cha
Prof. Sooel Son
Prof. Shin Yoo
Prof. Insu Yun

Ph.D. Thesis Defense

2

IoT Ecosystem (In)Security

3

Smartphone
USIMApp

Gyro. GPS

CAN Low

CAN High

ECU 1 ECU 2 ECU 3

prepare,
send

accept,
check, receive

accept,
check, ignore

WearablesPCWireless Router IP Camera

Base Station

IMS

Internet

Smart TV

Charging User
Database

VoLTESpecification

Blockchain

Cellular Network

Gateway

Car Smart Key Infotainment CAN

Controller

Drone

Cellular Network

IoT Ecosystem (In)Security

4

Smartphone
USIMApp

Gyro. GPS

CAN Low

CAN High

ECU 1 ECU 2 ECU 3

prepare,
send

accept,
check, receive

accept,
check, ignore

WearablesPCWireless Router IP Camera

Base Station

IMS

Internet

Smart TV

Charging User
Information

VoLTESpecification

Blockchain

Gateway

Car Smart Key Infotainment CAN

Controller

Drone

USIM
WISA’14

Drone
USENIX Sec’15

VoLTE
CCS’15

Charging
WISA’16

Gateway
EuroS&P’17

Specification
TMC’18

EOS
WOOT’19

Baseband
NDSS’21

Wireless Router
IP Camera
ACSAC’20

CAN - ECU
NDA

Smart TV
NDA

Infotainment
NDA

Smart Key
NDA

Wearable
WISA’15

User Fingerprinting
USENIX Sec’22

Security Analysis of IoT Devices
 The number of IoT devices are rapidly increasing
 Scalability is the key to analyzing threats in widespread devices

 Challenge: absence of development standards
– Opacity (Obscurity)

 Vendors do not release implementation details
– Diversity

 Complex hardware/implementation diversity

 Scaling up the vulnerability analysis is challenging

5

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

 Firmware collection
– Physically obtaining numerous devices is infeasible
– Download firmware images from vendors websites

 Firmware emulation and dynamic analysis
– Build a virtual environment mimicking a real device
– Run automated pentesting (e.g., Metasploit)
– Run fuzzers (e.g., AFL)

 Firmware and static analysis
– Analyze firmware structure and memory layout
– Identify target functions
– Run symbolic execution (e.g., angr)

 Known vulnerability analysis
– Build PoC exploits and run them (e.g., Metasploit)
– Build signatures and search them (e.g., BCSA)

IoT Analysis Procedure

Vulnerabilities

Known Vulnerability
Analysis

Low emulation rate (16.3%)

Not scalable (≤ 10 images)

A few studies (≤ 10)

1

3

2

1

3

2

Motivating Observation
 Existing academic studies focused on developing novel/fresh approaches

 Such approaches often disregard/ignore heuristics

 Opacity (Obscurity)
– Vendors do not release implementation details
 Conducting empirical analysis and developing “dirty” heuristics are inevitable

 Diversity
– Complex hardware/implementation diversity
 Systematizing the developed heuristics is necessary

7

Research Statement

8

Although heuristics seem to be trivial and not novel,
developing/systematizing “dirty” heuristics is necessary
to enable large-scale vulnerability analysis of IoT devices

Target Device Categories

9

 Select two device categories having different characteristics

Properties Wireless Routers, IP Cameras Smartphone Baseband

of Vendors Numerous A Few (Oligopoly)

Operating System General Purpose OS (Linux) No OS Abstraction

Firmware Structure Well-Known Unknown

of Files in Firmware Multiple Files Monolithic

Functionality Simple Complex (Real-Time)

of Peripherals A Few Multiple

Emulation Feasible Nearly Infeasible

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

Analysis Roadmap
 Firmware Emulation Problem

– Low emulation rate (16.3%)
 Wireless routers, IP cameras

 Firmware Analysis Problem
– Not scalable (≤ 10 images)
 Smartphone baseband

 Known Vulnerability Analysis Problem
– A few studies (≤ 10)
 Both device categories

Vulnerabilities

Known Vulnerability
Analysis

1

3

2

1

3

2

10

Enabling Large-scale Emulation of IoT Firmware
with Heuristic Workarounds

IEEE Security & Privacy
Dongkwan Kim, Eunsoo Kim, Mingeun Kim

Yeongjin Jang, Yongdae Kim

Extension of FirmAE
ACSAC 2020

Developing Heuristics for
Firmware Emulation:

Case study of Linux-based IoT Devices

(In)Security of Linux-Based IoT Devices
 34.2 billion embedded devices will be in use in 2025*

– Wireless routers, IP cameras, ...

 Many botnets target IoT devices
– Mirai (Aug. 2016)
– Satori (Dec. 2017)
– Crypto (May. 2018)
– ECHOBOT (Dec. 2019)
– New Mirai variant (July 2020, 2021~)
 DDoS attacks: DynDNS (2016), GitHub (2018), ...

 Exposed to the Internet, especially web interfaces
– Shodan, ZoomEye
– Over 30 exploits in Mirai variants

12 *https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

Low emulation
success rate (16.3%)

Existing Analysis Approaches

13

Years

Costin et. al.
(SEC’14)

FIE
(SEC’13)

Firmalice
(NDSS’15)

Costin et. al.
(AsiaCCS’16)

Firmadyne
(NDSS’16)

FirmPin
(BHUS’18)

Firm-AFL
(SEC’19)

P2IM
(SEC’20)

HALucinator
(SEC’20)

Pretender
(RAID’19)

Symbolic Execution Target System Emulation

Peripheral I/O Modeling

: Static Approach : Dynamic Approach

Manual / Heuristic Analysis

Cui et. al.
(NDSS’13)

...

...

...

...

 Custom kernel and library
– Hook system calls
– Mimic NVRAM-related functions

 *NVRAM: flash memory

 Emulating target firmware twice
– Collect useful logs (IP address, device name)
– Configure the system with the logs

Firmadyne: state-of-the-art firmware emulator

14

Firmadyne can emulate only 183 of 1,124 (16.3%)
firmware images for web services

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Firmware

Firmadyne

QEMU Emulator

Motivating example: CVE-2014-3936
 Target

– D-Link DIR-505L

 Symptom
– Fails to configure network interface

 Possible causes
– Access to unsupported peripherals
– Retrieve unknown/improper values

 How to address
– Forcibly set up the network interface

15

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

D-Link
DIR-505L

CVE-2014-3036

brctl addif br0 eth0

Firmadyne

Motivating example: CVE-2017-5521
 Target

– NETGEAR R6250

 Symptom
– Fails to boot and run the web service

 Possible causes
– Incorrect init program
– Missing kernel module to handle IOCTL

 How to address
– Set the correct init program path
– Add an IOCTL wrapper

16

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

NETGEAR
R6250

CVE-2017-5521

Boot /sbin/preinit

Handle IOCTL

Firmadyne

Simple heuristics are effective!

Our approach
 Goal

– Run admin web services for dynamic security analysis

 Requirements
– Emulated system should be reachable from the host
– Web services should be available

 Approach
– Investigate failure cases of Firmadyne
– Develop heuristics to satisfy the emulation requirements

17

FirmAE overview

18

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Analysis Container

Precompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Pre-Emulation Final Emulation

1 2

3

4

5

Failure Analysis

Examples of Developed Heuristics

19

Where Problem Heuristics

Boot Missing files or directories
Extract path strings and create them
(e.g., /var, /etc)

Library
for

Virtualization
Unknown configuration values

Search filesystem and original kernel
(e.g., /etc/nvram.default)

Network No network interface
Forcibly configure a default interface
(e.g., eth0, 192.168.0.1)

Programs Unexecuted web server
Forcibly run the server
(e.g., run httpd)

FirmAE overview

20

Firmware
Dataset

Vendor Servers

Input
Firmware

Filesystem

Fuzzer

Analysis Container

Crash DB

ConfirmDebugPrecompiled Custom Kernel (ARM, MIPS)

Library/Device Driver

Boot &
Initialize

Network
Setup

Extracted Filesystem + Custom Binaries

Web/CGI
Daemons

Emulation Manager

Parallelization

Emulation
DBPre-Emulation Final Emulation

1 2

3

4

Checker

5

Failure Analysis Systemization Dynamic Analysis

Emulation Results (vs Firmadyne)

21

Firmadyne FirmAE
Dataset Vendor Images Web Web

AnalysisSet
(Outdated)

D-Link 179 54 (30.17%) 167 (93.30%)
NETGEAR 73 5 (6.85%) 59 (80.82%)
TP-Link 274 30 (10.95%) 257 (93.80%)

Sub Total 526 89 (16.92%) 483 (91.83%)

LatestSet
(Latest)

D-Link 58 17 (29.31%) 48 (82.76%)
TP-Link 69 10 (14.49%) 54 (78.26%)

NETGEAR 101 7 (6.93%) 79 (78.22%)
TRENDnet 106 23 (21.70%) 63 (59.43%)

ASUS 107 25 (23.36%) 62 (57.94%)
Belkin 37 2 (5.41%) 22 (59.46%)
Linksys 55 8 (14.55%) 44 (80.00%)
Zyxel 20 0 (0%) 10 (50.00%)

Sub Total 553 92 (16.64%) 382 (69.08%)

CamSet
(Latest)

D-Link 26 0 (0%) 17 (65.38%)
TP-Link 6 0 (0%) 0 (0%)

TRENDnet 13 2 (15.38%) 10 (76.92%)
Sub Total 45 2 (4.44%) 27 (60.00%)

Total 1124 183 (16.28%) 892 (79.36%)

IP Cameras

Wireless
Routers

*Latest firmware images are checked as of Dec. 2018

x5

Dynamic Analysis Results
 Dynamic security analysis

– Known vulnerabilities
 RouterSploit (set of known exploits)
 14 (Firmadyne) 320 (FirmAE)

– New vulnerabilities
 RouterSploit + Simple custom fuzzer
 23 vulns from 95 latest devices (affecting 6 vendors)

22

Description Total Vulns (Devices)

Information Leak 8 (157)

Command Injection 23 (112)

Authentication Bypass 2 (5)

Buffer Overflow 5 (7)

Conclusion and Lessons Learned
 Existing approaches build a generic firmware emulator without detailed analysis

 Low emulation rate

 Effectiveness of empirical analysis and heuristics
– Successfully emulate firmware images (16.28% 79.36%)
– Successfully transfer heuristics (old version latest version, routers IP cameras)
– Help security analysis (known vulns: 14 320, new vulns: 23)

 Lessons learned
– Developing/Systematizing heuristics are effective and necessary
– Many IoT devices share similar code bases

23

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

Analysis Roadmap
 Firmware Emulation Problem

– Successful emulation (16.28% 79.36%)
 Wireless routers, IP cameras

 Firmware Analysis Problem
– Not scalable (≤ 10 images)
 Smartphone baseband

 Known Vulnerability Analysis Problem
– A few studies (≤ 10)
 Both device categories

Vulnerabilities

Known Vulnerability
Analysis

1

3

2

1

3

2

24

Developing Heuristics for
Firmware Analysis:

Case study of Smartphone Baseband

BaseSpec: Comparative Analysis of
Baseband Software and Cellular Specifications for L3 Protocols

NDSS 2021
Eunsoo Kim*, Dongkwan Kim*, CheolJun Park,

Insu Yun, Yongdae Kim

*: co-first author

AP

BP
2~5G

Why Cellular Baseband?

26

Application
Processor

Application Data

Cellular
Base Station

Cellular
Core Network

Realtime
Software

Baseband
Processor

Vulns

AP

BP
2~5G

Why Baseband?

27

Application
Processor

Malicious
Base Station

Malicious Data

Realtime
Software

Baseband
Processor

Baseband Manages Cellular Protocols
 Similar to OSI Model
 Layer 3 (L3) manages core procedures

– Call Control, Mobility or Session Management, …

 Multiple vulnerabilities have been found in L3

28

Existing Analysis Approaches

29

Years: Firmware Analysis : Black-box Testing

Weinmann
(WOOT’12)

Van et. al.
(ESSoS’14)

Raza et. al.
(Securecomm’17)

Ad-hoc Analysis
Hard to identify analysis points
Limited to a few images (≤ 10)

Black-box Testing
Requires real devices

Cama
(OPCDE’18)

Mulliner et. al.
(BHUS’09)

Mulliner et. al.
(Sec’11)

Lin et. al.
(HITB’16)

Shaik et. al.
(NDSS’16)

Tu et. al.
(SIGCOMM’14)

Rupprecht et. al.
(Sec’16)

Fang et. al.
(ESORICS’18)

Shaik et. al.
(WiSec’19)

Kim et. al.
(S&P’19)

Golde
(REcon’16)

Challenges in Baseband Firmware Analysis
 Numerous functions (over 90K) in a single firmware image (over 30MB)
 Non-trivial, Real-time operations (e.g., mobility, session, call, interrupts, ...)
 Vendors do not release implementation details
 How can we analyze firmware structure?

 Diverse firmware versions and device models
 How can we scale up the analysis?

30

Motivating Example: IDA Pro Analysis
 IDA Pro (state-of-the-art tool) fails to identify functions

– Initial: only 450 functions
– Actual: over 90,000 functions

 Problems
– IDA cannot support ARM memory layout setup

 Memory layout should be set first

– IDA cannot analyze indirect calls
 Interrupt tables, function pointers, ...

31

Incomplete
Disassembly

Invalid
Function

Identification

How to improve the performance?

Our Approach
 Goal

– Identify target functions for further security analysis
 L3 decoder functions

 Requirements
– Should load firmware into a correct memory layout
– Should identify functions in firmware correctly
– Should detect target functions among the identified functions

 Approach
– Investigate firmware manually
– Develop heuristics to satisfy the firmware analysis requirements

32

Firmware Analysis Overview

33

Analyzing Firmware File Formats
 Baseband firmware

– Downloaded from a 3rd party website
– Single binary over 30 MB
– Unknown format

 Leverage binary analysis’s heuristic knowledge
– 4-byte integers often represent a base address, size, or offset

34

Typical Firmware
(Multiple Binaries)

Baseband Firmware
(Single Binary)

Base Address Size Offset

Segment Name

Memory Layout Analysis
 Observation

– Access invalid memory regions

 Possible causes
– Partial firmware
– Special memory layout setup

 Eventually figured out “scatter-loading”

35

Invalid
Memory Region

Scatter-Loading
 Runtime feature in ARM-based embedded devices
 Memory regions are relocated at runtime

– Copy, Decompress, Zero-initialize memory regions

 None of existing binary analysis approaches considered scatter-loading

36

RO Section RO Section

Library Code

Zero Initialized

Compressed Data

Decompressed Data

Load View Execution View

Copy

Zero Initialize

Original Binary

Library Code
Relocated
at runtime

Scatter-Loading Heuristics
 Observation

– A memory layout is defined in source files
 Linker inserts pre-defined table

 Approach
– Find scatter-loading table
– Detect scatter-loading functions
– Emulate scatter-loading operations

 Applicable to other ARM-based embedded devices

37

Src Dst Size Function

LOAD 0x8000
{

EXEC_ROM +0 { *(+RO) }
RAM +0x1000 { *(+RW,+ZI) }
HEAP +0x2000 EMPTY 0x100 {}
STACK +0x3000 EMPTY 0x400 {}

}

Function Boundary Identification
 Baseband is a complex embedded system

– Numerous indirect calls
 Interrupt tables, function pointers, ...

– ARM mode (32-bit) + THUMB mode (16-bit)
– Data appears “in” the code section
 More difficult than traditional function identification

 Existing approaches
– ByteWeight (SEC’14), Shin et. al. (SEC’15), Andriesse et. al. (SEC’16, SP’17), ...
 Most approaches do not consider ARM/THUMB co-existing binaries
 State-of-the-art tool (IDA) cannot analyze (450 among 90K funcs are detected)

38

Function Identification Heuristics
 Identify frequent function prologues

– Linear sweep as proposed in Andriesse et. al. (SEC’16)
– Functions often start with a “PUSH“ instruction
– Analyze PUSH instruction

 Different byte code in ARM/Thumb mode
 Should contain LR register
 Should not contain SP, PC register
 Should contain temporary registers (e.g., R2-R4)

 Analyze Thumb-mode function pointers
– Thumb mode function call (pointer+1)
– Find thumb mode function pointer

39

Function Identification Heuristics
 Utilize debug information (logging messages)

– Developers often include debug information
– Analyze customized debug structure

 An instruction candidate has an operand that refers to debug information
 Should be a part of a function

40

Magic Value

Debug msg

Filename

Identifying L3 Decoder Functions
 Utilize debug information (logging messages)

– Commonly used in analyzing stripped binaries

 Search target keywords
– “Decode”, “L3”, “EMM”, ...

 Implement simple slicer
– Debug information is not directly referred

 Cache optimization
– Slice forward to compute correct addresses
– Analyze target keywords

 Identify functions of interest (i.e., L3 decoder functions)

41

Addresses not directly
referred

Evaluation
 Implemented as an IDA Pro Plugin

– Function boundary identification
– L3 decoder function identification

42

Model Build Date
Firmware Size

(MB)
of Funcs in

Default IDA Pro
of Funcs after

Applying Heuristics
L3 Decoder

Address
Model 1 May/2020 44 452 91043 0x4113ed5a
Model 2 May/2020 44 3601 89989 0x4117e646
Model 3 May/2020 43.8 446 89893 0x4114ca72

...
Model 9 Apr/2020 37 386 66663 0x4100b0b4
Model 1 Apr/2019 43.4 457 89789 0x411c03aa
Model 2 Feb/2019 43.3 450 88209 0x4127b8ca
Model 3 Feb/2019 43.1 450 80268 0x4124810e

...
Model 9 Apr/2016 36.8 377 61714 0x41019c00

Latest
8 Images

Oldest
8 Images

Validity CheckValidity Check

 Analyze manually from the detected decoder functions

 5 functional bugs, 4 memory-related bugs (2 RCEs) affecting 33 messages

Decoder Function Handler Function

Security Analysis

43

Benign Msg

Invalid Msg

Correct Handling✓

Unknown Msg

Correct Validation✓

X
Functional Bug

X
Memory-related
Vulnerability

Correct Validation✓

Conclusion and Lessons Learned
 Existing approaches

– Black-box testing Need physical devices
– Ad-hoc firmware analysis Not scalable (≤ 10 images)

 Effectiveness of empirical analysis and developing/systematizing heuristics
– Successfully identify function boundaries (595 73,874 on avg., 124 times)
– Successfully detect target functions (0 false positive)
– Help security analysis (9 new bugs, including 2 RCEs)

 Lessons learned
– Developing/Systematizing Heuristics are effective and necessary
– Baseband devices within a vendor share similar code

44

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

Analysis Roadmap
 Firmware Emulation Problem

– Successful emulation (16.28% 79.36%)
 Wireless routers, IP cameras

 Firmware Analysis Problem
– Successful analysis (595 funcs 73,874 funcs)
 Smartphone baseband

 Known Vulnerability Analysis Problem
– A few studies (≤ 10)
 Both device categories

Vulnerabilities

Known Vulnerability
Analysis

1

3

2

1

3

2

45

Finding Known (Similar) Vulnerability
in IoT Devices with BCSA

Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering
and Lessons Learned

IEEE Transactions on Software Engineering (major revision, under review)
Dongkwan Kim, Eunsoo Kim,

Sang Kil Cha, Sooel Son, and Yongdae Kim

Known Vulnerability Issues in IoT Devices
 Example vulnerability: CVE-2018-10106

– Permission bypass in “cgibin” reveals users’ private key
– Parameter can be over-written with a newline character (0x0a)

– Still appears in newer device versions (D-Link)
 CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376

– Appears in different venders (TRENDnet)
 CVE-2018-7034

 Potential reasons
– Improper version/update management
– Copy and paste buggy code

47

Known Vulnerability Analysis
 Dynamic analysis

– Build PoC exploits and run them
☞ Require successful emulation

☞ Architecture challenges (e.g., ARM, MIPS, PowerPC, Hexagon, ...)
☞ Dependency issues in peripherals (e.g., Camera, LED, MMIO access, ...)

☞ Require time for emulation and testing

 Static analysis
– Match known signatures
– Leverage Binary code similarity analysis (BCSA)
 Apply BCSA to find same/similar vulnerabilities in newer devices

48

Increasing Scalability
Preserving Low False Positive Rate

Binary Code Similarity Analysis
 Binary code similarity analysis (BCSA)

 Popular tasks
– Malware detection
– Plagiarism detection
– Authorship identification
– Vulnerability discovery

49

Known
Binary Code A

Unknown
Binary Code B

 Target
– Architecture (e.g., x86 -> ARM)
– Compiler (e.g., gcc -> clang)
– Optimization (e.g., O1 -> O3)
– Obfuscation (e.g., LLVM-Obfuscator)

BCSA Workflow

50

Similarity
Score:
0.0 ~ 1.0

BCSA Workflow

51

Pre-Semantic Features Semantic Features

 Numeric features
– BB-level: # of instructions, …
– CFG-level: # of basic blocks, …
– CG-level: # of callers, …

 Semantic features
– Symbolic constraints
– Runtime behavior (memory values, …)
– Program slices (data flow, …)
– Embedded vector (machine learning)
– …

 Non-Numeric features
– Raw bytes: N-gram, …
– Instructions: Assembly, IR, …
– Functions: Name, …

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

2014 2015 2016 20182017

BLEX

TEDEM Multi-k-MH DiscovRE

BinGo

BinDNN

FirmUp

Tracy Esh

GitZ

BinClone

BinSign

BinSequence BinArm

SANER18

WSB

BinGo-E

MockingBird

CACompare

BinMatch

MASES18

Zeek

𝒂𝒂Diff

VulSeeker

Kam1n0

Asm2Vec

2019 2020

ASE17

CoP

LoPD BinSim

IMF-SIM

InnerEye

BAR19i

SAFE

BAR19ii

FuncNet

Genius

Xmatch

Gemini

DeepBinDiff

ImOpt

ACCESS20

Patcheko

52

Studied 43 papers
in 27 venues

BCSA Features in Previous Literature

53

: used with machine learning

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Heavy use of complex semantic features (>84%)
 No clear justification

BCSA Features in Previous Literature

54

: used with machine learning

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Heavy use of complex machine learning (>90%)
 Hard to interpret/understand the results

55

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned
No same benchmark

56

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Only 2 released full dataset

57

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

Insufficient benchmarks
(86% < 10,000 binaries)
(98% < 4 architectures)
 Hard to evaluate useful features

58

BCSA Dataset
in Previous
Literature

*Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

A few focused on
IoT vulnerability Analysis

Problems of Existing Studies
 In IoT devices, vulnerabilities can exist in

– Libraries or utility binaries
– Custom binaries (mostly, CGI binaries)

 Existing studies focus on only libraries or utility binaries
– Open-source packages (e.g., OpenSSL, bash, vsftpd, ...)
– Easy to generate training dataset

 None has analyzed custom binaries (e.g., CGI binaries)
– No available dataset (or vulnerability details)
– Not enough samples

59

What BCSA studies have focused on
None of BCSA studies targeted

 No available open-source tools
– Among 43 BCSA studies, 10 released their source code
– Among these 10 tools,

 Only 2 supports x86, ARM, MIPS (i.e., Gemini, VulSeeker)

– Most IoT devices are based on ARM/MIPS

 Limitations of Gemini and VulSeeker
– Do not have full source code
– Based on complex machine learning Hard to interpret/understand the results
– How about performance?

60

Problems of Existing Studies

Motivating Example: CVE-2015-1791
 VulSeeker released partial results without full source code

– Target firmware: Tomato Cisco M10v2 (router)
– Target vulnerability: ssl3_get_new_session_ticket in libssl.so
– Race condition causes double free (DoS)

 Approach
– Compile vulnerable OpenSSL package (v1.0.1f) with 48 compiler options
– Query each of the 48 functions in the target firmware
– Average the similarity scores for all functions

 Result
– VulSeeker found the vulnerability at Rank 21

61

Enough?

Our Approach
 Fundamental problems of existing BCSA studies

– No available dataset Establish a baseline benchmark (BinKit)
– Heavy use of machine learning Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features Investigate pre-semantic features

 Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries Establish ground truth dataset (FirmKit)

– No available tool & Not enough studies Empirically analyze firmware images

62

Building a Comprehensive Benchmark (BinKit)
 Compile GNU software packages
 Build ground truth by leveraging source file names and line numbers

63

Category Previous Options Our Options (Count)

Architecture 98% tested ≤ 4
x86, arm ,mips, mipseb
for 32, 64 bits (4x2=8)

Compiler 95% tested ≤ 5
GCC: v4~v8 (5)
Clang: v4~v7 (4)

Optimization 16% tested all opti-levels O0, O1, O2, O3, Os (5)

Noinline 5% tested Include (1)

PIE 0% tested Include (1)

Link Time Optimization 2% tested Include (1)

Obfuscation 26% tested Obfuscator-LLVM (4)

Building a Comprehensive Benchmark (BinKit)
 Compile GNU software packages
 Build ground truth by leveraging source file names and line numbers

64

Category Previous Options Our Options (Count)

Architecture 98% tested ≤ 4
x86, arm ,mips, mipseb
for 32, 64 bits (4x2=8)

Compiler 95% tested ≤ 5
GCC: v4~v8 (5)
Clang: v4~v7 (4)

Optimization 16% tested all opti-levels O0, O1, O2, O3, Os (5)

Noinline 5% tested Include (1)

PIE 0% tested Include (1)

Link Time Optimization 2% tested Include (1)

Obfuscation 26% tested Obfuscator-LLVM (4)243,128 binaries for 36,256,322 functions

Analyze Pre-Semantic Features
 Justify semantic features (84%) and machine learning (90% after 2019)

 Cannot understand the results

 Simple pre-semantic features
 Can understand the results

65

Numeric Level Feature Category Example

CFG-Level
(41 Features)

Graphic Basic Blocks, Edges, …

Computing Arithmetic, Logic, …

Data Manipulating Copy, Addressing, …

Control Transferring Jmp, Conditional Jmp, …

Category Mixing Arithmetic + Shifting, …

CG-Level
(6 Features)

Counting Unique Callers, Callees, Imported Callees

Including Duplicates Incoming Calls, Outgoing Calls, Imported Calls

Design an Interpretable Model (TikNib)
 An intuitive model to easily understand the results

 Relative difference of feature f of function A and B

 Similarity score of function A and B
– Average of the relative differences of all features from f1 to fN

– Any other scoring metric can be integrated (e.g., Jaccard index)

66

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝑟𝑟 − 𝐵𝐵𝑟𝑟 =
𝐴𝐴𝑟𝑟 − 𝐵𝐵𝑟𝑟

𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝑟𝑟,𝐵𝐵𝑟𝑟

𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠(𝐴𝐴,𝐵𝐵) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝑟𝑟1,𝐵𝐵𝑟𝑟1 + ⋯+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝑟𝑟𝑁𝑁,𝐵𝐵𝑟𝑟𝑁𝑁

𝑁𝑁

Experiment Methodology
 There exist over 36M functions

 We need a fast approach to obtain the tendency

 Utilize TP/TN pairs for each function λ (same as Gemini, VulSeeker)

 Greedily select features with ROC AUC
 10-fold cross validation for each test

67

(λTarget, λTrue Positive) (λTarget, λTrue Negative)

Different Compiler Option

Same Compiler Option

68

: Exist in all 10 tests

Examples of Findings

69

Architecture has a small impact

x86 vs ARM 0.99

x86 vs MIPS 0.98

ARM vs MIPS 0.98

32-bit vs 64-bit (Bits) 0.99

Little vs Big (Endian) 1.00

Optimization is largely influential

O0 vs O3 0.90

O2 vs O3 0.97

Compiler version has almost no effect

GCCv4 vs GCCv8 0.99

Clangv4 vs Clangv7 1.00

GCC and Clang have diverse characteristics

GCC vs Clang 0.96

Extra Options are less effective

vs PIE 1.00

vs Noinline 0.97

vs LTO 0.98

O-LLVM is insufficient for evaluation

vs Bogus Control Flow 0.98

vs Control Flow Flattening 0.98

vs Instruction Substitution 1.00

vs All Three Options 0.95

ROC AUCROC AUC

Pre-semantic Features Are Effective!
 VulSeeker (ASE’18)

– State of the art using numeric features
– Use both pre-semantic and semantic features with deep neural network

 vs VulSeeker

70

Dataset Packages Arch Compilers VulSeeker Ours

ASE1 2 3 1 0.99 0.9661

ASE2 5 3 1 - 0.9610

ASE3 5 6 2 0.8849 0.9616

ASE4 5 8 9 - 0.9450

Larger
Dataset

ROC AUC

Case Study: Heartbleed
 Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

 Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

 Average the similarity score rank in each option

71 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Case Study: Heartbleed
 Utilize TikNib to analyze Heartbleed (CVE-2014-0160)

– Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...

 Target: tls1_process_heartbeat, dtls1_process_heartbeat
– OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
– Query tls1_process_heartbeat

 Average the similarity score rank in each option

72 *tls: tls1_process_heartbeat *dtls: dtls1_process_heartbeat

Pre-semantic features with a
simple/interpretable model is effective!

Our Approach
 Fundamental problems of existing BCSA studies

– No available dataset Establish a baseline benchmark (BinKit)
– Heavy use of machine learning Develop a simple & interpretable model (TikNib)
– Heavy use of semantic features Investigate pre-semantic features
 Proper feature engineering is important
 Simple model with presemantic features can show promising performance

 Problems of BCSA-based IoT vulnerability analysis
– No analysis on custom binaries Establish ground truth dataset (FirmKit)

– No available tool & Not enough studies Empirically analyze firmware images

73

Establishing Ground Truth Dataset

 Simple custom binaries
 Target dataset

– 1,124 firmware images
– 52,086,995 functions
– 267 vulnerable functions

 98 command injection
 162 information leak
 7 buffer overflow
 19 unique vulnerabilities

 Complex custom binaries
 Target dataset

– 18 firmware images
– 1,405,959 functions
– 56 vulnerable functions

 18 uninitialized pointer dereference
 38 buffer overflow

 4 unique vulnerabilities

74

Smartphone Cellular BasebandWireless Routers, IP Cameras

 Manually marked vulnerable function addresses

Analyzing Linux-based IoT Devices
 Randomly select one sample for each unique vulnerability
 Query it for each firmware image (1,124 images, 52M funcs)

75

Top-k # of Total Vulns Percent

1 141 / 267 52.81%

5 167 / 267 62.55%

10 182 / 267 68.16%

50 196 / 267 73.41%

100 196 / 267 73.41%

Original TikNib

Analyzing Linux-based IoT Devices
 Randomly select one sample for each unique vulnerability
 Query it for each firmware image (1,124 images, 52M funcs)

76

Top-k # of Total Vulns Percent

1 141 / 267 52.81%

5 167 / 267 62.55%

10 182 / 267 68.16%

50 196 / 267 73.41%

100 196 / 267 73.41%

Original TikNib

How to increase the performance?

Failure Case Study - CVE-2015-2051
 Architecture specific issues

– ARM -> ARM: detected at Rank 1.75 on average
– ARM -> MIPS: detected at Rank over 1000

 Arm produces a wrapper function for a library function call (.PLT)
 # of callees, # of imported callees, cfg_size, ...

77

ARM (Wrapper Function Call) MIPS (External Function Call)

Failure Case Study - CVE-2017-5521

78

Different version has an
additional check routine

No such routine exists

Failure Case Study - CVE-2017-5521

79

Different version has an
additional check routine

Need features robust against
different architectures and versions

No such routine exists

Developing Heuristic Features
 Leverage heuristic knowledge of binary analysts

 IoT binaries often contain function names
– Use caller and callee names (i.e., internal and library function names)

 Data strings often contain useful information
– CGI binaries parse URLs with hard-coded strings

 “HTTP”, “POST”, “answer1”, “password”, ...

– Use words in a string

 Compare each word with Jaccard index
– The score is merged with TikNib

80

𝐽𝐽𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑟𝑟𝑟𝑟 𝐴𝐴,𝐵𝐵 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

Final Results of Linux-based IoT Devices
 Randomly select one sample for each unique vulnerability
 Query it for each firmware image (1,124 images, 52M funcs)

81

Top-k # of Total Vulns Percent

1 141 / 267 52.81%

5 167 / 267 62.55%

10 182 / 267 68.16%

50 196 / 267 73.41%

100 196 / 267 73.41%

of Total Vulns Percent

263 / 267 98.50%

263 / 267 98.50%

266 / 267 99.63%

266 / 267 99.63%

267 / 267 100%

Original TikNib TikNib (+Heuristic Features)

82

Vulnerable

Patched

Not Related

Sorted by similarity score

Case Study of CVE-2016-6277
 Command injection in CGI parsing (NETGEAR)

 Simple patch based on a block list

 BCSA can distinguish vulnerabilities from the patched ones

83

Range # of Samples Is Vulnerable? Vendor Arch

0.95 ~ 1.00 29 (3 Ground Truths) Vulnerable Netgear ARM

0.5 ~ 0.95 40 Patched Netgear ARM

Case Study of CVE-2015-2051
 Command injection in HNAP cgibin, D-Link

– No parameter check, no authentication

84

Range # of Samples Is Vulnerable? Vender Arch

0.81 ~ 1.00 5 (4 Ground Truths) Vulnerable D-Link ARM

0.68 ~ 0.73 25 Patched D-Link ARM

0.58 ~ 0.75 6 (5 Ground Truths) Vulnerable D-Link, TRENDnet MIPS

0.53 ~ 0.59 3 Patched D-Link MIPS

0.68 1 Patched D-Link MIPSEB

0.58 ~ 0.69 15 (14 Ground Truths) Vulnerable D-Link MIPSEB

0.53 9 Patched D-Link MIPSEB

0.49 ~ 0.53 17 Patched D-Link MIPS, MIPSEB

/htdocs/cgibin

/usr/sbin/upnpkits

Case Study of CVE-2017-7240
 Directory traversal in CGI parsing
 DD-WRT’s httpd

– Designed to accept only allowed file types
– Customized images allow all file types

 The vulnerability resides in the data section, but BCSA found it
 BCSA can detect diversities in compile environments

85

Range # of Samples Is Vulnerable? Vendors

0.95 ~ 1.00 3 (3 Ground Truths) Vulnerable Belkin

0.54 ~ 0.83 6 Not Vulnerable Belkin

0.50 ~ 0.53 23 Not Vulnerable Asus, ZyXEL, linksys

*DD-WRT: Open source IoT firmware

Case Study of CVE-2018-10106
 Permission bypass with a newline (AUTHORIZED_GROUP)

 Same vulnerability appears in new versions (D-Link)
– CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376

 Same vulnerability appears in different vendors (TRENDnet, with score: 1.0)
– CVE-2018-7034

 Same vulnerability appears in different architectures (MIPS, MIPSEB, ARM)
– MIPS: 0.65~1, ARM: 0.5~0.6

86

Range # of Samples Is Vulnerable? Vendor

0.99 ~ 1.00 45 (42 Ground Truths) Vulnerable D-Link, TRENDnet

0.48 ~ 0.86
42 (41 Ground Truths) Vulnerable D-Link

5 Patched D-Link

Case Study of CVE-2014-2962
 Directory traversal in parsing a “getpage” parameter in CGI

 Similar/same vulnerability has existed from 2006 in multiple vendors
– CVE-2006-2337 D-Link
– CVE-2006-5607 Inca
– CVE-2006-5536 D-Link
– CVE-2014-2962 Belkin
– CVE-2015-7250 Zte
– CVE-2017-15647 Fiberhome
– CVE-2017-8770 Twsz

87

Range # of Samples Is Vulnerable? Vender

0.96 ~ 1.00 2 (2 Ground Truths) Vulnerable Belkin

0.66 ~ 0.86 13
Potentially
Vulnerable

Belkin, TRENDnet,
Netgear

0.53 1 Patched Netgear

Case Study of CVE-2020-15893
 Command injection in parsing SSDP parameters in “/htdocs/cgibin”

 Same vulnerability has multiple CVE (D-Link)
– CVE-2019-20015, CVE-2019-20016, CVE-2019-20017

 Same vulnerability appears in newer versions (D-Link)
– CVE-2020-15893, CVE-2021-29379

88

Range # of Samples Is Vulnerable? Vender Arch

0.86 ~ 1.00 43 (40 Ground Truths) Vulnerable D-Link, TRENDnet MIPS, MIPSEB

0.96 1 Patched TRENDnet MIPS, MIPSEB

0.85 17 (12 Ground Truths) Vulnerable D-Link MIPS, MIPSEB

0.82 7 (7 Ground Truths) Vulnerable D-Link ARM

0.74 ~ 0.81 42 Patched D-Link MIPS, MIPSEB, ARM

0.52 1 (1 Ground Truth) Vulnerable D-Link MIPSEB

A debugging routine exists
_dtrace()

/usr/sbin/upnpkits

Case Study of CVE-2016-11021
 Command injection in a debugging feature

 D-Link images mostly use “/bin/alphapd”
– Some use “/bin/goahead” with the same vulnerability

 GoAhead, an open-source embedded webserver
 D-Link customized GoAhead

89

Range # of Samples Is Vulnerable? Vender

0.97 ~ 1.00 13 (3 Ground Truths) Vulnerable D-Link

0.67 ~ 0.75 21 Patched D-Link, TRENDnet

0.60 ~ 0.67 9 (0 Ground Truths) Vulnerable D-Link

0.59 1 Patched TRENDnet

0.50 ~ 0.59 18 Not Vulnerable D-Link

Static
binaries

2 goahead servers

Case Study of Linksys Vuln.
 Command injection vulnerability

– Testing function calls the vulnerable function
– After authentication, the vulnerable function can be called

– 2 images are vulnerable
– 3 images removed the test function, but still vulnerable after auth.
– 5 images removed the vulnerable function call (actually not vulnerable)

– Added sanitizer to validate input strings

90

Range # of Samples Is Vulnerable? Vendor Arch

0.72 ~ 1.00 10 (1 Ground Truths) Vulnerable Linksys MIPS

Range # of Samples Is Vulnerable? Vendor Arch

0.53 ~ 0.64 7 Patched Linksys MIPS

Final Results of Baseband Software
 Preprocess firmware images with the firmware analysis heuristics
 Randomly select one sample for each unique vulnerability
 Query it for each firmware image (18 images, 1.4M funcs)

91

Top-k # of Total Vulns Percent

1 36 / 56 64.29%

5 41 / 56 73.21%

10 41 / 56 73.21%

50 42 / 56 75.00%

100 44 / 56 78.57%

of Total Vulns Percent

48 / 56 85.71%

49 / 56 87.50%

49 / 56 87.50%

50 / 56 89.29%

52 / 56 92.86%

Original TikNib TikNib (+Heuristic Features)

Analyzing Open-Source Vulnerabilities
 Two well-known OpenSSL vulnerabilities

– CVE-2015-1791: ssl3_get_new_session_ticket
 Genius, Gemini, VulSeeker

– CVE-2014-0160: tls1_process_heartbeat
 Genius, Gemini, Multi-kMH, DiscovRE, SAFE

 Approach
– Compile OpenSSL v1.0.1f with combinations of compiler options
– Search all compiled functions in each firmware image
– Average the similarity score for each function in each firmware image

 Ground truth
– Match a function name and version string
– CVE-2015-1791: 309 of 455 are vulnerable
– CVE 2014-0160: 34 of 222 are vulnerable

92

Version strings in libssl.so

Final Results of Two CVEs (Only Vulns)

93

Top-k # of Vulns Percent

1 252 / 309 81.55%

5 284 / 309 91.91%

10 293 / 309 94.82%

50 294 / 309 95.15%

100 294 / 309 95.15%

of Vulns Percent

309 / 309 100%

309 / 309 100%

309 / 309 100%

309 / 309 100%

309 / 309 100%

Top-k # of Vulns Percent

1 4 / 34 11.76%

5 17 / 34 50.00%

10 17 / 34 50.00%

50 32 / 34 94.12%

100 34 / 34 100%

of Vulns Percent

34 / 34 100%

34 / 34 100%

34 / 34 100%

34 / 34 100%

34 / 34 100%

C
VE

-2
01

5-
17

91
C

VE
-2

01
4-

01
60

Original TikNib TikNib + Heuristic Features

Final Results of Two CVEs (Inc. Patched)

94

Top-k # of Funcs Percent

1 252 / 455 55.38%

5 284 / 455 62.42%

10 293 / 455 64.40%

50 337 / 455 74.07%

100 382 / 455 83.96%

of Funcs Percent

455 / 455 100%

455 / 455 100%

455 / 455 100%

455 / 455 100%

455 / 455 100%

Top-k # of Funcs Percent

1 7 / 222 3.15%

5 29 / 222 13.06%

10 44 / 222 19.82%

50 110 / 222 49.55%

100 158 / 222 71.17%

of Funcs Percent

215 / 222 96.85%

215 / 222 96.85%

222 / 222 100%

222 / 222 100%

222 / 222 100%

C
VE

-2
01

5-
17

91
C

VE
-2

01
4-

01
60

Original TikNib TikNib + Heuristic Features

Similarity Score (Vulnerable vs Patched)
 Vulnerable functions are ranked higher than patched functions

– Queried OpenSSL v1.0.1f

95

Old versions (0.9.8k, 0.9.8zc)
Static binary (/bin/curl)

CVE-2015-1791 (309 of 455 are vulns) CVE-2014-0160 (34 of 222 are vulns)

Comparison Results of CVE-2015-1791
 Top-k results of all functions in all firmware images (*NOT* each image)
 Gemini and VulSeeker utilized 4643 firmware images (unavailable)
 TikNib utilized 1,124 firmware images (FirmAE)

96

Gemini VulSeeker

Top-k
of

Funcs
%

of
Funcs

%

1 1 100% 1 100%

5 2 40% 3 60%

10 4 40% 6 60%

50 36 72% 41 82%

100 75 75% 83 83%

TikNib
(O0-O3)

TikNib
(O2-O3)

TikNib
(+Heuristics)

of
Funcs

%
of

Funcs
%

of
Funcs

%

1 100% 1 100% 1 100%

5 100% 5 100% 5 100%

9 90% 10 100% 10 100%

19 38% 46 92% 50 100%

50 50% 82 82% 100 100%

Firmware images are highly likely compiled with O2-O3

Limitation and Future Works
 Developing other effective features

– Type recovery (NDSS’11, SIGPLAN’13, SEC’17, CCS’18, …)
 Type-related features are effective
 # of arguments, each argument type, function return type
 All benchmark tests achieved ROC AUC close to 1.0

– Inter-procedural analysis
 Optimization affects function in-lining

– Inter-binary analysis
 Handle static binaries

 Determining whether a detected function is indeed vulnerable
– Function-level: e.g., leverage symbolic execution
– Binary-level: e.g., emulate a target binary and check dynamically
– Firmware-level: e.g., analyze vulnerabilities spread over multiple binaries
 Leave as future work

97

Conclusion and Lessons Learned
 Existing studies focused on complex and novel approaches

without releasing neither dataset nor full source code
– Systematized terms, features, benchmarks in existing literature
– Built a comprehensive benchmark (BinKit)
 Demonstrated a simple model with pre-semantic features (TikNib) is effective!

 A few analyzed IoT devices, none targeted custom binaries
– Established IoT vulnerability ground truth dataset (FirmKit)
– Systematized heuristic features into TikNib
 Successfully identified vulnerabilities

(442 in custom binaries, 343 in OpenSSL libraries)
 BCSA is effective in IoT vulnerability analysis

as many devices share similar codebases

98

IoT Device
(Embedded Device)

No

Yes

No

Can Obtain
Real Device?

Search Firmware
on the Web

Can Obtain
Firmware?

No
Stop Analysis

Can Emulate
Firmware?

Dynamic Analysis

Yes

Static Analysis

Firmware
Analysis

Analysis Roadmap
 Firmware Emulation Problem

– Successful emulation (16.28% 79.36%)
 Wireless routers, IP cameras

 Firmware Analysis Problem
– Successful analysis (595 funcs 73,874 funcs)
 Smartphone baseband

 Known Vulnerability Analysis Problem
– Effective bug discovery (253 442)
 Both device categories

Vulnerabilities

Known Vulnerability
Analysis

1

3

2

1

3

2

99

Thesis Conclusion
 Existing studies focused on developing novel approaches, disregarding heuristics
 To remove security threats in convoluted IoT ecosystem, heuristics are inevitable!

100

Summary of Results

Emulate firmware 183 images 892 images (16.28% 79.36%)

Discover vulnerability known vulns.: 320, new vulns: 95

Identify function boundary 595 funcs 73,874 funcs (18 images, on avg.)

Detect target function 18 decoders, 0 false positives

Discover software bug functional bugs: 78, known vulns: 6, new vulns: 50

Systematic study of BCSA
Systematized features and benchmarks of 43 studies.
Built a benchmark dataset of 243K bins for 36M funcs.

Discover known vulnerability
Built a vulnerability dataset of 323 vulns in 1,142 images.
442 vulns in custom bins, 343 vulns in OpenSSL libs.

 Developing/Systematizing heuristics helped test 1,256 vulnerabilities

1

3

2

Thesis Conclusion
 Existing studies focused on developing novel approaches, disregarding heuristics
 To remove security threats in convoluted IoT ecosystem, heuristics are inevitable!

101

Summary of Results

Emulate firmware 183 images 892 images (16.28% 79.36%)

Discover vulnerability known vulns.: 320, new vulns: 95

Identify function boundary 595 funcs 73,874 funcs (18 images, on avg.)

Detect target function 18 decoders, 0 false positives

Discover software bug functional bugs: 78, known vulns: 6, new vulns: 50

Systematic study of BCSA
Systematized features and benchmarks of 43 studies.
Built a benchmark dataset of 243K bins for 36M funcs.

Discover known vulnerability
Built a vulnerability dataset of 323 vulns in 1,142 images.
442 vulns in custom bins, 343 vulns in OpenSSL libs.

 Developing/Systematizing heuristics helped test 1,256 vulnerabilities

1

3

2

Although heuristics seem to be trivial and not novel,
developing/systematizing “dirty” heuristics is necessary
to enable large-scale vulnerability analysis of IoT devices

Publications (Related to This Thesis)
 IoT dynamic analysis

– Dongkwan Kim, Eunsoo Kim, Mingeun Kim, Yeongjin Jang, and Yongdae Kim, “Enabling
Large-scale Emulation of IoT Firmware with Heuristic Workarounds”, IEEE S&P

– Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae
Kim, “FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis”,
ACSAC 2020

 IoT static analysis
– Eunsoo Kim∗, Dongkwan Kim∗, CheolJun Park, Insu Yun, and Yongdae Kim, “BaseSpec:

Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols”,
NDSS 2021

 Binary code similarity analysis
– Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim, “Revisiting

Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons
Learned”, IEEE Transactions on Software Engineering (major revision, under review)

102

*: co-first author

Publications (Other IoT devices)
 Wearable IoT devices

– Dongkwan Kim, Suwan Park, Kibum Choi, Yongdae Kim, “BurnFit: Analyzing and
Exploiting Wearable Devices”, WISA 2015

 Sensors in IoT devices
– Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh, Kibum Choi,

Jungwoo Choi, and Yongdae Kim, “Rocking Drones with Intentional Sound Noise on
Gyroscopic Sensors”, USENIX Security 2015

 USIM in smartphone
– Shinjo Park, Suwan Park, Insu Yun, Dongkwan Kim, Yongdae Kim, “Analyzing Security of

Korean USIM-based PKI Certificate Service”, WISA 2014

 Blockchain
– Sangsup Lee, Daejun Kim, Dongkwan Kim, Sooel Son, and Yongdae Kim, “Who Spent My

EOS? On the (In)Security of Resource Management of EOS.IO”, WOOT 2019

103

Publications (Cellular Infrastructure)
 Control plane

– Byeongdo Hong, Shinjo Park, Hongil Kim, Dongkwan Kim, Hyunwook Hong, Hyunwoo Choi, Jean-Pierre
Seifert, Sung-Ju Lee, and Yongdae Kim, “Peeking over the Cellular Walled Gardens - A Method for Closed
Network Diagnosis”, IEEE Transactions on Mobile Computing (TMC 2018)

 Data plane
– Sangwook Bae, Mincheol Son, Dongkwan Kim, CheolJun Park, Jiho Lee, Sooel Son, Yongdae Kim, “Watching

the Watchers: Practical Video Identification Attack in LTE Networks”, USENIX Security 2021
– Hyunwook Hong, Hyunwoo Choi, Dongkwan Kim, Hongil Kim, Byeongdo Hong, Jiseong Noh, and Yongdae

Kim, “When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks”, EuroS&P
2017

– Hyunwook Hong, Hongil Kim, Byeongdo Hong, Dongkwan Kim, Hyunwoo Choi, Eunkyu Lee and Yongdae Kim,
“7. Pay As You Want: Bypassing Charging System in Operational Cellular Networks”, WISA 2016

 Hybrid plane
– Hongil Kim∗, Dongkwan Kim∗, Minhee Kwon, Hyungseok Han, Yeongjin Jang, Dongsu Han, Taesoo Kim, and

Yongdae Kim, “Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations”, CCS
2015

104

*: co-first author

Participated Projects (Selected)
 Industrial Projects

– Researcher, Samsung, “An Industry-academia Task with Samsung Electronics Device Solutions Business”, 2020
– Leader, Samsung, “Organizing Samsung Capture-the-flag (SCTF)”, 2017-2018
– Researcher, SK Telecom, “A Study on the Security Vulnerability Analysis and Response Method of LTE Networks”, 2016-

2017
– Researcher, Hyundai NGV, “A Security Vulnerability Analysis of Smartcar Core Modules”, 2016-2017
– Researcher, SK Telecom, “A Study on the Security Analysis and Response Method of LTE Networks”, 2015-2016
– Researcher, Samsung, “A Security Analysis of Samsung SmartTV”, 2014-2015

 Governmental Projects (including US)
– Leader, AOARD, “Cyber Physical Analysis of System Software Survivability by Stimulating Sensors on Drones”, 2020-2021
– Leader, NSR, “A study on the Android-based Security Analysis Technology”, 2020
– Researcher, IITP, “A study on the Security of Random Number Generator and Embedded Devices”, 2017-2019
– Leader, NSR, “A study on the Firmware Emulation Technology for Linux-based Routers”, 2017
– Researcher, IITP, “A development of Automated Reverse Engineering and Vulnerability Detection Base Technology

through Binary Code Analysis”, 2016-2018
– Leader, KAIST, “A CAPTCHA Design based on Human Perception Characteristics”, 2016
– Leader, NSR, “A Study on the Vulnerability Analysis Method of Domestic/International Smartcars”, 2015
– Researcher, KISA, “A Study on the Analysis of Technology and Security Threats in LTE Femtocell”, 2013-2014

105

106

dkay@kaist.ac.kr

mailto:dkay@kaist.ac.kr

BACKUP SLIDES

107

BaseSpec Separation

 Dongkwan
– Developing heuristics for firmware structure analysis

 Eunsoo
– Extract embedded specification from the baseband binary
– Compare the message structures implemented in the baseband and specification

108

Type Features Should Be Studied
 Function type does not change unless source code varies

– # of arguments
– Leverage Jaccard index for checking argument type, return type

 All benchmark tests achieved ROC AUC over 0.99

 vs VulSeeker

 Features from type information is effective
(NDSS’11, SIGPLAN’13, SEC’17, CCS’18, …)

109

Dataset Packages Arch Compilers VulSeeker Ours Ours (Type)

ASE1 2 3 1 0.99 0.9727 0.9924

ASE2 5 3 1 - 0.9764 0.9931

ASE3 5 6 2 0.8849 0.9782 0.9939

ASE4 5 8 9 - 0.9584 0.9841

Larger
Dataset

ROC AUC

𝐽𝐽 𝐴𝐴,𝐵𝐵 =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

Failure Case Analysis
 Errors in IDA Pro (72% use IDA Pro)

– Cannot handle some registers in GCC and Clang
 GCC: ‘gp’, Clang: ‘s0’, ‘v0’

– incomplete CFGs
 switch table, data in code section

 Diversity of compiler backends
– Conditional instructions for ARM

 GCC: MOVLE, MOVGT, Clang: MOV + JLE, MOV + JGT
– Instruction pointer loading

 GCC: call __x86.get_pc_thunk.bx, Clang: call $+5

 Architecture-specific macros
– mul_add in OpenSSL

110

 Need to consider these cases carefully!

Case Study of CVE-2017-6077
 Command injection in parsing “ping_IPAddr” (for debug)

 3 firmware images have the functionality
– If functionality exists, vulnerable

111

Range # of Samples Is Vulnerable? Vendor

0.85 ~ 1.00 2 (2 Ground Truths) Vulnerable Netgear

0.5 ~ 0.85 1 Vulnerable Netgear

Gets additional parameter for VPN

Case Study of CVE-2012-2765
 Password disclosure in login page (client-side password checking)

 Vulnerability in a webpage, but detected at the binary level
 Three images are released at Feb. 2018

– One patched, the other two were still vulnerable

 BCSA can detect diversities in compile environments

112

Range # of Samples Is Vulnerable? Vender

0.72 ~ 1.00 7 (3 Ground Truths) Vulnerable Belkin

0.66 1 Patched Belkin

0.58 2 (0 Ground Truths) Vulnerable Belkin

0.53 1 Not Vulnerable Linksys

(Latest)
No debug routine

Case Study of CVE-2017-5521
 Two staged vulnerability

– Stage1: leak the device id
– Stage2: leak the user id/password using the device id

113

Range # of Samples Is Vulnerable? Vender Arch

0.98 ~ 1.00 40 (26 Ground Truths) Vulnerable Netgear ARM

0.74 ~ 0.83 73 Patched Netgear ARM

0.79 2 (0 Ground Truths) Incorrectly Patched Netgear ARM

0.51 ~ 0.52 11 (9 Ground Truths) Vulnerable Netgear MIPS

0.52 ~ 0.59 151 Unknown
Netgear, TRENDnet,

D-Link,...
ARM, MIPS,

MIPSEB
Old firmware images, different binaries

Stripped

Case Study of CVE-2017-5521
 Two staged vulnerability

– Stage1: leak the device id
– Stage2: leak the user id/password using the device id

114

Range # of Samples Is Vulnerable? Vender Arch

0.98 ~ 1.00 79 (26 Ground Truths) Vulnerable Netgear ARM

0.76 ~ 0.92 36 Patched Netgear ARM

0.74 ~ 0.78 24 (6 Ground Truths) Vulnerable Netgear MIPS

0.68 ~ 0.73 9 Patched Netgear MIPS

0.51 ~ 0.53 3 No Functionality Netgear MIPSEB

0.51 ~ 0.51 1 Patched Netgear MIPS

0.51 ~ 0.51 14 (3 Ground Truths) Vulnerable Netgear MIPS
Old images,
Different implementation

Failure Case Study – Baseband B7
 Too small function

– CFG size: 3

 Code for a new routine
– To support Dual SIMs
 Takes a large portion

115

Old versions

Recent versions

Function for Dual SIMs

Size of the target
function is critical

	Improving Large-Scale Vulnerability Analysis of IoT Devices with�Heuristics and Binary Code Similarity
	슬라이드 번호 2
	IoT Ecosystem (In)Security
	IoT Ecosystem (In)Security
	Security Analysis of IoT Devices
	IoT Analysis Procedure
	Motivating Observation
	Research Statement
	Target Device Categories
	Analysis Roadmap
	슬라이드 번호 11
	(In)Security of Linux-Based IoT Devices
	Existing Analysis Approaches
	Firmadyne: state-of-the-art firmware emulator
	Motivating example: CVE-2014-3936
	Motivating example: CVE-2017-5521
	Our approach
	FirmAE overview
	Examples of Developed Heuristics
	FirmAE overview
	Emulation Results (vs Firmadyne)
	Dynamic Analysis Results
	Conclusion and Lessons Learned
	Analysis Roadmap
	Developing Heuristics for�Firmware Analysis:�Case study of Smartphone Baseband
	Why Cellular Baseband?
	Why Baseband?
	Baseband Manages Cellular Protocols
	Existing Analysis Approaches
	Challenges in Baseband Firmware Analysis
	Motivating Example: IDA Pro Analysis
	Our Approach
	Firmware Analysis Overview
	Analyzing Firmware File Formats
	Memory Layout Analysis
	Scatter-Loading
	Scatter-Loading Heuristics
	Function Boundary Identification
	Function Identification Heuristics
	Function Identification Heuristics
	Identifying L3 Decoder Functions
	Evaluation
	Security Analysis
	Conclusion and Lessons Learned
	Analysis Roadmap
	Finding Known (Similar) Vulnerability in IoT Devices with BCSA
	Known Vulnerability Issues in IoT Devices
	Known Vulnerability Analysis
	Binary Code Similarity Analysis
	BCSA Workflow
	BCSA Workflow
	슬라이드 번호 52
	BCSA Features in Previous Literature
	BCSA Features in Previous Literature
	슬라이드 번호 55
	슬라이드 번호 56
	슬라이드 번호 57
	슬라이드 번호 58
	Problems of Existing Studies
	Problems of Existing Studies
	Motivating Example: CVE-2015-1791
	Our Approach
	Building a Comprehensive Benchmark (BinKit)
	Building a Comprehensive Benchmark (BinKit)
	Analyze Pre-Semantic Features
	Design an Interpretable Model (TikNib)
	Experiment Methodology
	슬라이드 번호 68
	Examples of Findings
	Pre-semantic Features Are Effective!
	Case Study: Heartbleed
	Case Study: Heartbleed
	Our Approach
	Establishing Ground Truth Dataset
	Analyzing Linux-based IoT Devices
	Analyzing Linux-based IoT Devices
	Failure Case Study - CVE-2015-2051
	Failure Case Study - CVE-2017-5521
	Failure Case Study - CVE-2017-5521
	Developing Heuristic Features
	Final Results of Linux-based IoT Devices
	슬라이드 번호 82
	Case Study of CVE-2016-6277
	Case Study of CVE-2015-2051
	Case Study of CVE-2017-7240
	Case Study of CVE-2018-10106
	Case Study of CVE-2014-2962
	Case Study of CVE-2020-15893
	Case Study of CVE-2016-11021
	Case Study of Linksys Vuln.
	Final Results of Baseband Software
	Analyzing Open-Source Vulnerabilities
	Final Results of Two CVEs (Only Vulns)
	Final Results of Two CVEs (Inc. Patched)
	Similarity Score (Vulnerable vs Patched)
	Comparison Results of CVE-2015-1791
	Limitation and Future Works
	Conclusion and Lessons Learned
	Analysis Roadmap
	Thesis Conclusion
	Thesis Conclusion
	Publications (Related to This Thesis)
	Publications (Other IoT devices)
	Publications (Cellular Infrastructure)
	Participated Projects (Selected)
	슬라이드 번호 106
	Backup slides
	BaseSpec Separation
	Type Features Should Be Studied
	Failure Case Analysis
	Case Study of CVE-2017-6077
	Case Study of CVE-2012-2765
	Case Study of CVE-2017-5521
	Case Study of CVE-2017-5521
	Failure Case Study – Baseband B7

