Ph.D. Thesis Defense

Improving Large-Scale Vulnerability Analysis of IoT Devices with Heuristics and Binary Code Similarity

Dongkwan Kim

School of Electrical Engineering KAIST 2021.12.07 Advisor: Yongdae Kim

Committee Members: Prof. Yongdae Kim – Chair Prof. Sang Kil Cha Prof. Sooel Son Prof. Shin Yoo Prof. Insu Yun

VALUE INT CECTIDITY INTOADTANTS

New Mirai Variant and ZHtrap Botnet Malware Emerge in the Wild

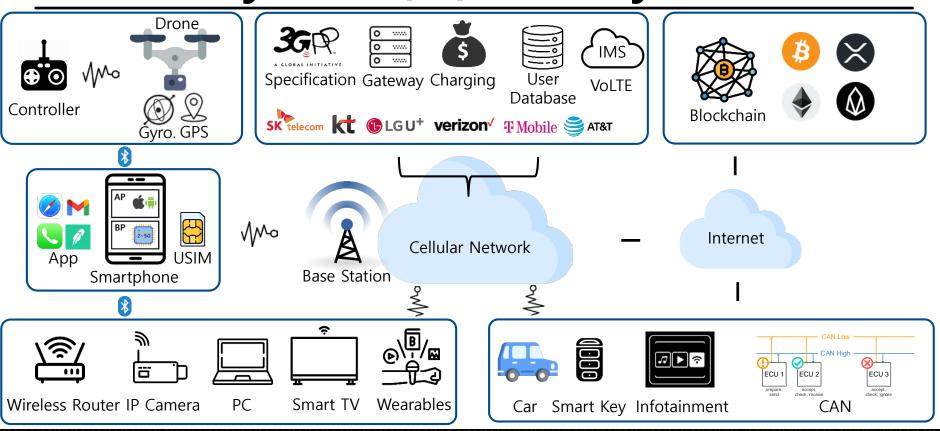
📔 🛗 March 16, 2021 🛔 Ravie Lakshmanan

Cyber Attacks on Industrial Sector: Lloyd's e Internet of Things.

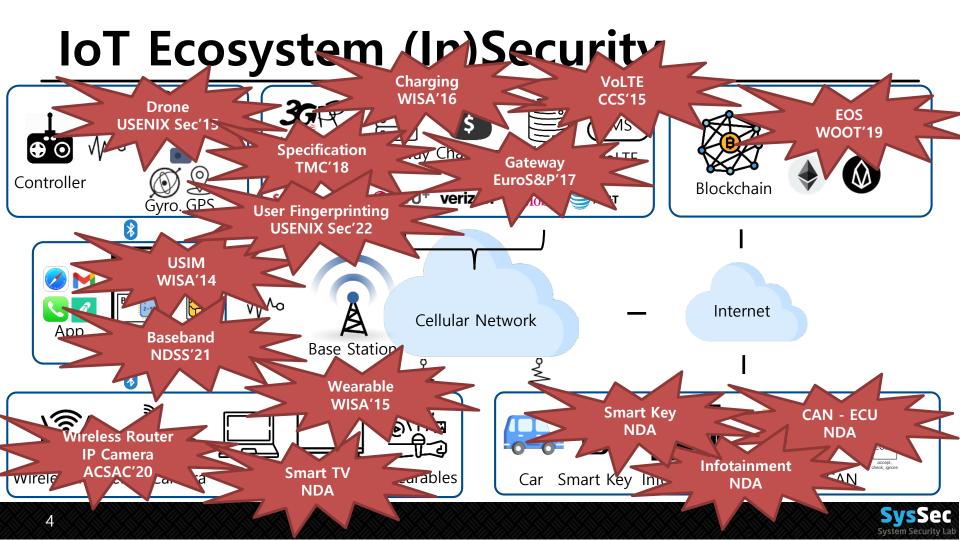
February Whistleblower: Ubiquiti Breach "Catastrophic"

ent

March 30, 2021


142 Comments

On Jan 11 Ilbiquiti Inc [NVSE/III] - a major vendor of cloud-enabled Internet of Things (IoT) devices


Your insecure Internet of Things devices are putting everyone at risk of attack

IoT devices are becoming more and more popular but many of the products people are installing don't come with adaquate security - and that's something cyber criminals can take advantage of.

IoT Ecosystem (In)Security

System Security La

Security Analysis of IoT Devices

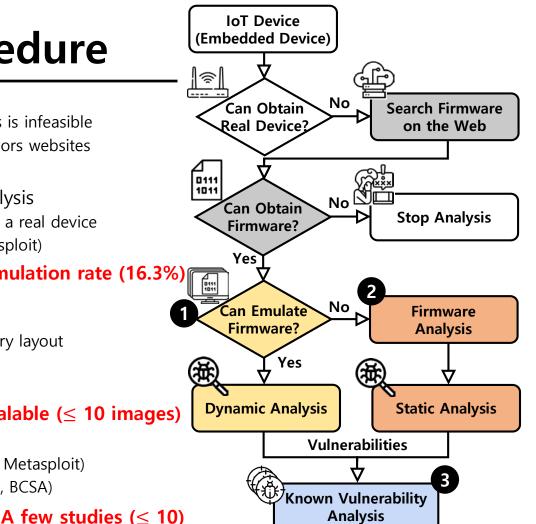
- The number of IoT devices are rapidly increasing
- → Scalability is the key to analyzing threats in widespread devices
- Challenge: absence of development standards
 - Opacity (Obscurity)
 - Vendors do not release implementation details
 - Diversity
 - Complex hardware/implementation diversity
- → Scaling up the vulnerability analysis is challenging

IoT Analysis Procedure

- Firmware collection **
 - Physically obtaining numerous devices is infeasible
 - Download firmware images from vendors websites
 - Firmware emulation and dynamic analysis
 - Build a virtual environment mimicking a real device
 - Run automated pentesting (e.g., Metasploit)
 - Run fuzzers (e.g., AFL)

Low emulation rate (16.3%)

Firmware and static analysis


- Analyze firmware structure and memory layout
- Identify target functions
- Run symbolic execution (e.g., angr)

Not scalable (\leq 10 images)

Known vulnerability analysis

- Build PoC exploits and run them (e.g., Metasploit)
- Build signatures and search them (e.g., BCSA)

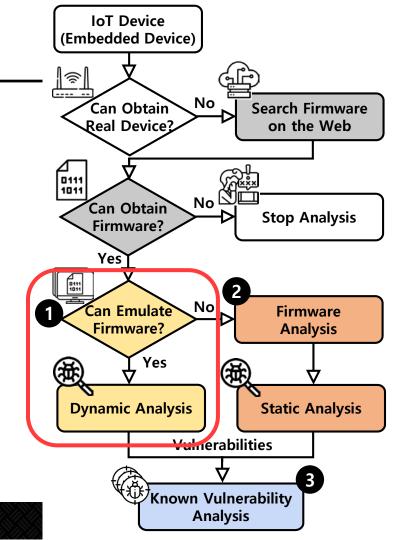
Motivating Observation

- Existing academic studies focused on developing novel/fresh approaches
 Such approaches often disregard/ignore heuristics
- Opacity (Obscurity)
 - Vendors do not release implementation details
 - → Conducting empirical analysis and developing "dirty" heuristics are inevitable
- ✤ Diversity
 - Complex hardware/implementation diversity
 - → Systematizing the developed heuristics is necessary

Research Statement

Although heuristics seem to be trivial and not novel, developing/systematizing "dirty" heuristics is necessary to enable large-scale vulnerability analysis of IoT devices

Target Device Categories


Select two device categories having different characteristics

Properties	Wireless Routers, IP Cameras	Smartphone Baseband
# of Vendors	Numerous	A Few (Oligopoly)
Operating System	General Purpose OS (Linux)	No OS Abstraction
Firmware Structure	Well-Known	Unknown
# of Files in Firmware	Multiple Files	Monolithic
Functionality	Simple	Complex (Real-Time)
# of Peripherals	A Few	Multiple
Emulation	Feasible	Nearly Infeasible

Analysis Roadmap

- Firmware Emulation Problem
 - Low emulation rate (16.3%)
 - → Wireless routers, IP cameras
- 2 Firmware Analysis Problem
 - Not scalable (\leq 10 images)
 - ➔ Smartphone baseband
- 3 Known Vulnerability Analysis Problem
 A few studies (≤ 10)
 - ➔ Both device categories

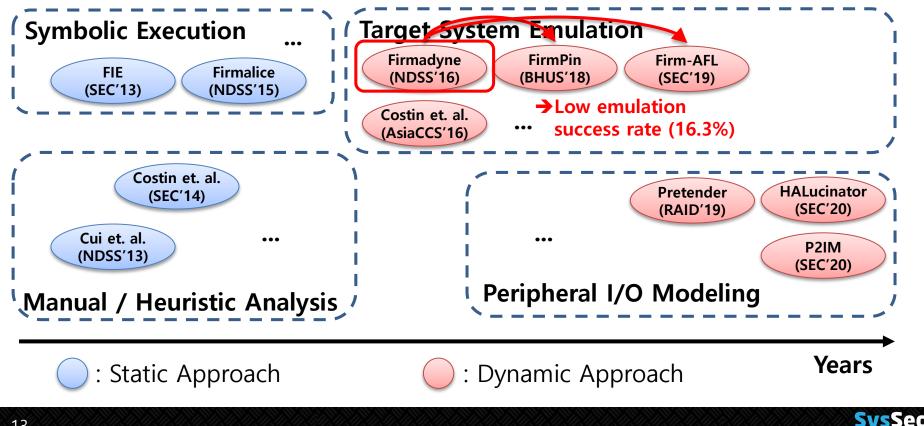
Developing Heuristics for Firmware Emulation: Case study of Linux-based IoT Devices

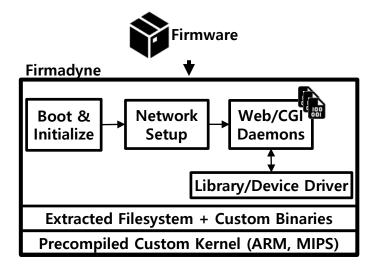
Enabling Large-scale Emulation of IoT Firmware with Heuristic Workarounds *IEEE Security & Privacy* **Dongkwan Kim**, Eunsoo Kim, Mingeun Kim Yeongjin Jang, Yongdae Kim

> Extension of FirmAE ACSAC 2020

(In)Security of Linux-Based IoT Devices

- ✤ 34.2 billion embedded devices will be in use in 2025*
 - Wireless routers, IP cameras, ...
- Many **botnets** target IoT devices
 - Mirai (Aug. 2016)
 - Satori (Dec. 2017)
 - Crypto (May. 2018)
 - ECHOBOT (Dec. 2019)
 - New Mirai variant (July 2020, 2021~)
 - → DDoS attacks: DynDNS (2016), GitHub (2018), ...
- Exposed to the Internet, especially web interfaces
 - Shodan, ZoomEye
 - Over 30 exploits in Mirai variants

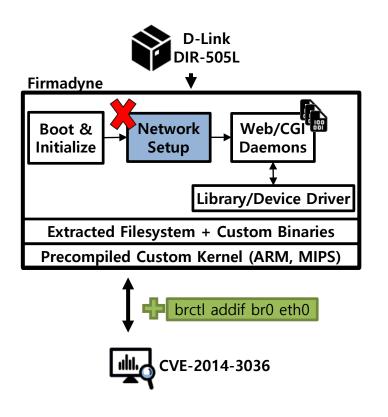



Existing Analysis Approaches

System Security La

Firmadyne: state-of-the-art firmware emulator

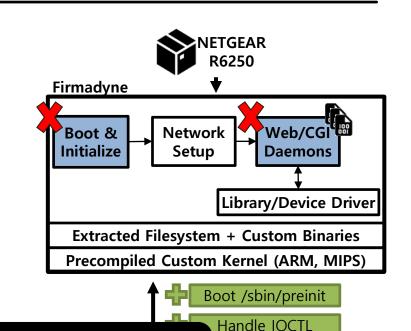
- ✤ Custom kernel and library
 - Hook system calls
 - Mimic NVRAM-related functions
 - *NVRAM: flash memory
- Emulating target firmware twice
 - Collect useful logs (IP address, device name)
 - Configure the system with the logs


QEMU Emulator

Firmadyne can emulate only 183 of 1,124 (16.3%) firmware images for web services

Motivating example: CVE-2014-3936

- Target
 - D-Link DIR-505L
- Symptom
 - Fails to configure network interface
- Possible causes
 - Access to unsupported peripherals
 - Retrieve unknown/improper values
- How to address
 - Forcibly set up the network interface

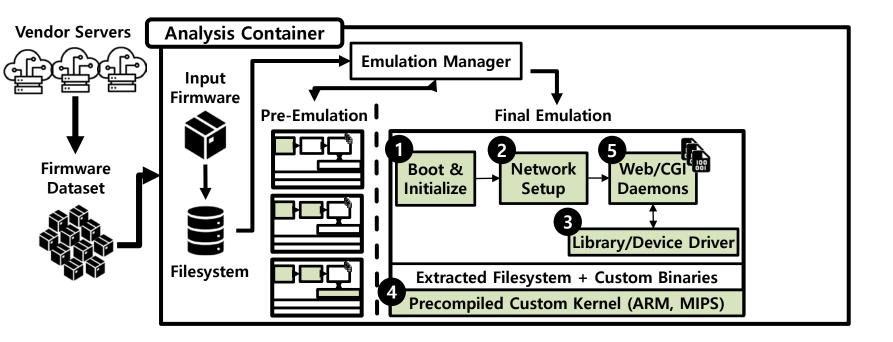


Motivating example: CVE-2017-5521

Simple heuristics are effective!

- Target
 - NETGEAR R6250
- Symptom
 - Fails to boot and run the web service
- Possible causes
 - Incorrect init program
 - Missing kernel module to handle IOCTL
- How to address
 - Set the correct
 - Add an IOCTL

-2017-5521

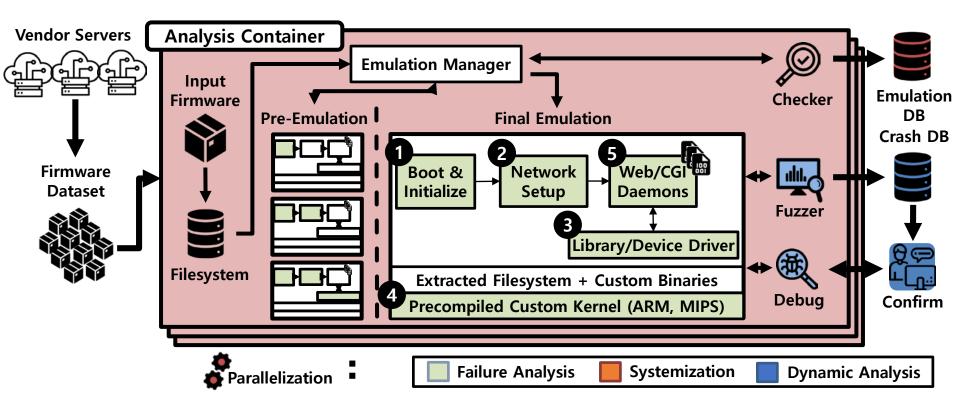


Our approach

- ✤ Goal
 - Run admin web services for dynamic security analysis
- ✤ Requirements
 - Emulated system should be reachable from the host
 - Web services should be available
- ✤ Approach
 - Investigate failure cases of Firmadyne
 - Develop heuristics to satisfy the emulation requirements

FirmAE overview

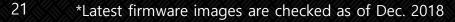
Failure Analysis



Examples of Developed Heuristics

Where	Problem	Heuristics
Boot	Missing files or directories	Extract path strings and create them (e.g., /var, /etc)
Library for Virtualization	Unknown configuration values	Search filesystem and original kernel (e.g., /etc/nvram.default)
Network	No network interface	Forcibly configure a default interface (e.g., eth0, 192.168.0.1)
Programs	Unexecuted web server	Forcibly run the server (e.g., run httpd)

FirmAE overview



Emulation Results (vs Firmadyne)

				Firmadyne	FirmAE
	Dataset	Vendor	Images	Web	Web
	AnalysisCat	D-Link	179	54 (30.17%)	167 (93.30%)
	AnalysisSet (Outdated)	NETGEAR	73	5 (6.85%)	59 (80.82%)
	(Outdated)	TP-Link	274	30 (10.95%)	257 (93.80%)
	Sub	Total	526	89 (16.92%)	▶ 483 (91.83%)
Wireless		D-Link	58	17 (29.31%)	48 (82.76%)
\prec		TP-Link	69	10 (14.49%)	54 (78.26%)
Routers		NETGEAR	101	7 (6.93%)	79 (78.22%)
	LatestSet	TRENDnet	106	23 (21.70%)	63 (59.43%)
	(Latest)	ASUS	107	25 (23.36%)	62 (57.94%)
		Belkin	37	2 (5.41%)	22 (59.46%)
		Linksys	55	8 (14.55%)	44 (80.00%)
		Zyxel	20	0 (0%)	10 (50.00%)
	Sub	Total	553	92 (16.64%) 💻	382 (69.08%)
IP Cameras ——	Comfort	D-Link	26	0 (0%)	17 (65.38%)
	CamSet (Latest)	TP-Link	6	0 (0%)	0 (0%)
	(Latest)	TRENDnet	13	2 (15.38%)	<u>10 (76.92%)</u>
	Sub	Total	45	2 (4.44%)	27 (60.00%)
	То	tal	1124	183 (16.28%)	892 (79.36%) X

System Security La

Dynamic Analysis Results

- Dynamic security analysis
 - Known vulnerabilities
 - RouterSploit (set of known exploits)
 - 14 (Firmadyne) → 320 (FirmAE)

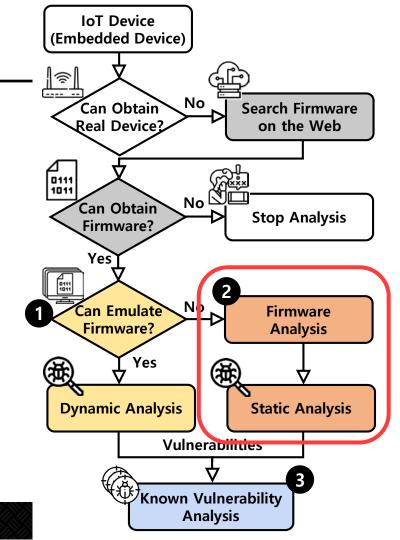
Description	Total Vulns (Devices)
Information Leak	8 (157)
Command Injection	23 (112)
Authentication Bypass	2 (5)
Buffer Overflow	5 (7)

- New vulnerabilities
 - RouterSploit + Simple custom fuzzer
 - 23 vulns from 95 latest devices (affecting 6 vendors)

Conclusion and Lessons Learned

- Existing approaches build a generic firmware emulator without detailed analysis
 Low emulation rate
- ✤ Effectiveness of empirical analysis and heuristics
 - Successfully emulate firmware images (16.28% → 79.36%)
 - Successfully transfer heuristics (old version → latest version, routers → IP cameras)
 - Help security analysis (known vulns: 14 → 320, new vulns: 23)
- ✤ Lessons learned
 - Developing/Systematizing heuristics are effective and necessary
 - Many IoT devices share similar code bases

Analysis Roadmap

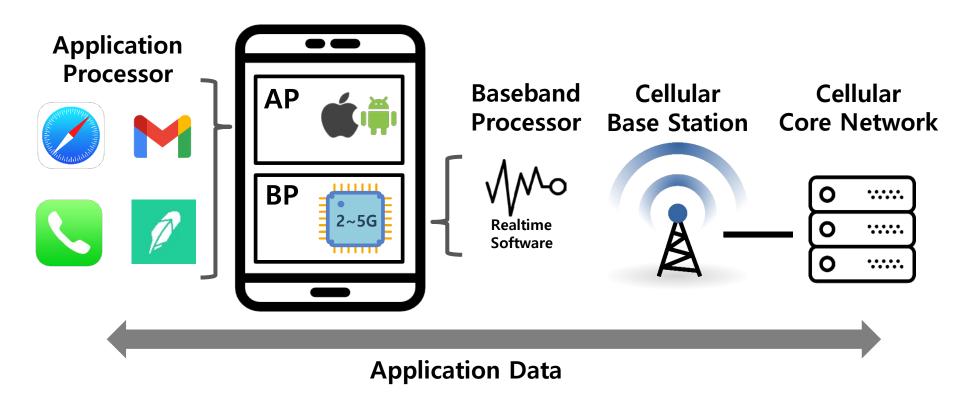

- Firmware Emulation Problem
 - Successful emulation (16.28% → 79.36%)
 - → Wireless routers, IP cameras

Firmware Analysis Problem

- Not scalable (\leq 10 images)
- ➔ Smartphone baseband

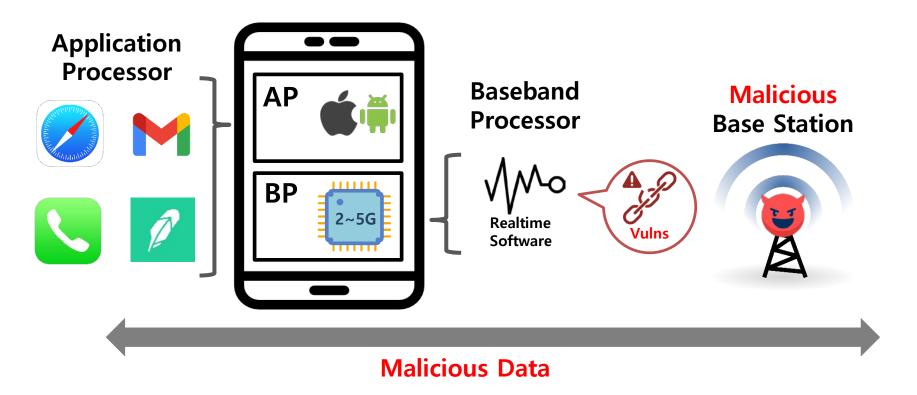
3 Known Vulnerability Analysis Problem
 – A few studies (≤ 10)

➔ Both device categories

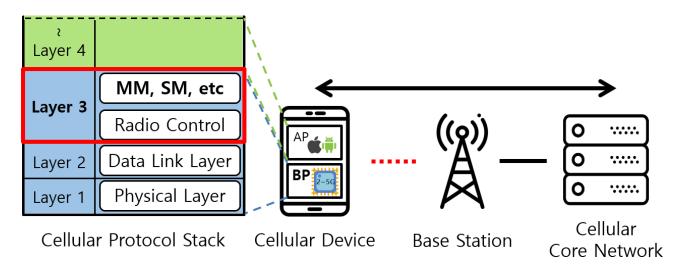

Developing Heuristics for Firmware Analysis: Case study of Smartphone Baseband

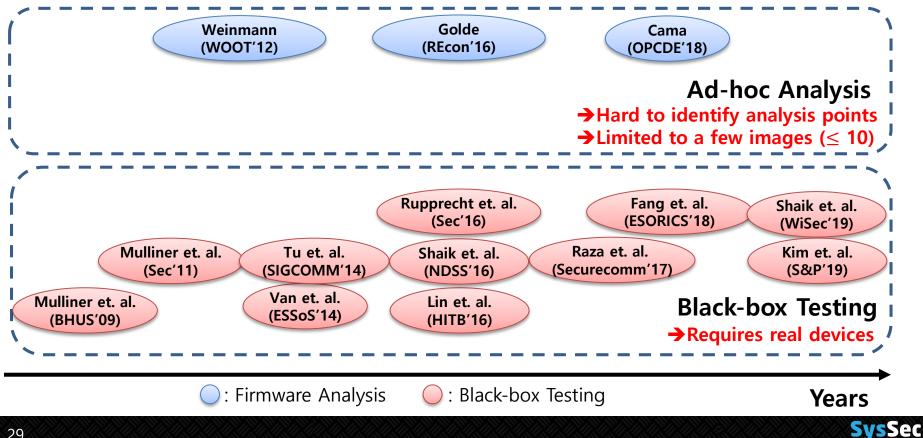
BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols *NDSS 2021* Eunsoo Kim*, **Dongkwan Kim***, CheolJun Park,

Insu Yun, Yongdae Kim


*: co-first author

Why Cellular Baseband?


Why Baseband?


Baseband Manages Cellular Protocols

- Similar to OSI Model
- Layer 3 (L3) manages core procedures
 - Call Control, Mobility or Session Management, ...
- Multiple vulnerabilities have been found in L3

Existing Analysis Approaches

System Security La

Challenges in Baseband Firmware Analysis

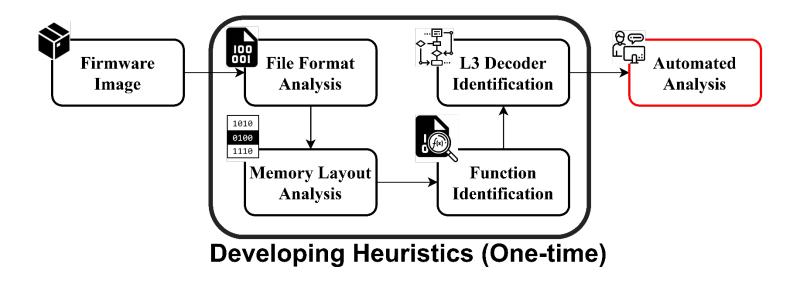
- ✤ Numerous functions (over 90K) in a single firmware image (over 30MB)
- Non-trivial, Real-time operations (e.g., mobility, session, call, interrupts, ...)
- Vendors do not release implementation details
- → How can we analyze firmware structure?
- Diverse firmware versions and device models
- → How can we scale up the analysis?

Motivating Example: IDA Pro Analysis

- ✤ IDA Pro (state-of-the-art tool) fails to identify functions
 - Initial: only 450 functions
 - Actual: over 90,000 functions
- Problems
 - IDA cannot support ARM memory layout setup
 - Memory layout should be set first
 - IDA cannot analyze indirect calls
 - Interrupt tables, function pointers, ...

How to improve the performance?

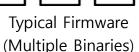
R0H:40087866 Function R0H:40087876 Function R0H:40087876 Identification R0H:40087877 R0H:40087877 R0H:40087877 R0H:40087877 R0H:40087877 R0H:40087876 R0H:40087876 R0H:40087876 R0H:40087876 R0H:40087876 R0H:40087876 R0H:80087876 R0H:40087876 R0H:80087876 R0H:40087880 LDR R0H:40087880 STR R0H:40087890 STR	ROM:40087864 ;		hid
NDI-140087867 NOV <	ROLL		
NDI-140087867 NOV <	ROM	DCB 0xB0 ;	. •
NDI-140087867 NOV <		Func	tion
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	inority and a second		
R0H:40087872 HUU K0, K0 R0H:40087872 HUU K0, K0 R0H:40087872 HUU R1, H0x100 R0H:40087874 ADD R0, SP, H8 R0H:40087876 STR R4, [SP, H0x108] R0H:40087876 BLX.W j aeabi_menclr4 R0H:40087878 LDR R0, entrixe fill R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087896 DCB R4, [SP, H4] R9, [SP] R0H:40087892 DCB 0K41 R6 R0H:40087893 DCB 0K41 R6 R0H:40087894 DCB 0K4 R6 R0H:40087895 DCB 0K41 R6 R0H:40087896 DCB 0K41 R6 R0H:40087896 DCB 0CB 0CB 0CB		- DCB 0xE2 -	
R0H:40087872 HUU K0, K0 R0H:40087872 HUU K0, K0 R0H:40087872 HUU R1, H0x100 R0H:40087874 ADD R0, SP, H8 R0H:40087876 STR R4, [SP, H0x108] R0H:40087876 BLX.W j aeabi_menclr4 R0H:40087878 LDR R0, entrixe fill R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087896 DCB R4, [SP, H4] R9, [SP] R0H:40087892 DCB 0K41 R6 R0H:40087893 DCB 0K41 R6 R0H:40087894 DCB 0K4 R6 R0H:40087895 DCB 0K41 R6 R0H:40087896 DCB 0K41 R6 R0H:40087896 DCB 0CB 0CB 0CB	R0M:40087870	dontifi	cation
R0H:40087872 HUU K0, K0 R0H:40087872 HUU K0, K0 R0H:40087872 HUU R1, H0x100 R0H:40087874 ADD R0, SP, H8 R0H:40087876 STR R4, [SP, H0x108] R0H:40087876 BLX.W j aeabi_menclr4 R0H:40087878 LDR R0, entrixe fill R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087886 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087886 STR R9, [SP] R0H:40087896 R0H:40087896 DCB R4, [SP, H4] R9, [SP] R0H:40087892 DCB 0K41 R6 R0H:40087893 DCB 0K41 R6 R0H:40087894 DCB 0K4 R6 R0H:40087895 DCB 0K41 R6 R0H:40087896 DCB 0K41 R6 R0H:40087896 DCB 0CB 0CB 0CB	R0M:40087871		cation
R01:40087874 H0U.W R1, BBx188 R01:40087876 ADD R0, SP, #8 R01:40087876 STR R4, [SP, #0x108] R01:40087876 BLX.W j			
R0H:40087876 R0D R0, SP, H8 R0H:40087876 STR R4, [SF, H0X108] R0H:40087876 STR R4, [SF, H0X108] R0H:40087876 BLX.W			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
R0H:40087882 STRB.W R4, [SP, #0x10C] R0H:40087886 STR R8, [SP] R0H:40087886 LDR R0, =0x01328 R0H:40087886 STR R0, =0x01328 R0H:40087886 STR R0, =0x01328 R0H:40087896 STR R0, E0x110] R0H:40087896 DCB R4, [SP, #1] R0H:40087896 DCB R4, [SP, #1] R0H:40087896 DCB 0x401 R0H:40087896 DCB 0x401 R0H:40087899 DCB 0x41 R0H:40087895 DCB 0x41 R0H:40087896 DCB 0x41 R0H:40087897 DCB 0x41 R0H:40087898 DCB 0x41 R0H:40087896 DCB 0x41 R0H:40087896 DCB 0x41 R0H:40087896 DCB 0x40 R0H:40087896 DCB 0x40 R0H:40087896 DCB 0x40 R0H:40087896 DCB 0x40 R0H:40087896			
R0H:40087886 STR R0, [SP] R0H:40087888 LDR R0, -6081328 R0H:40087886 STR R0, -6081328 R0H:40087886 STR R0, -6081328 R0H:40087896 STR R0, -6081328 R0H:40087890 MOU R0, R0, R0, R0 R0H:40087890 MOU R0, R0, R0 R0H:40087890 DCB 0xF8; R0H:40087893 DCB 0xF8; R0H:40087894 DCB 0xF8; R0H:40087895 DCB 0xF1; R0H:40087896 DCB 0xF1; R0H:40087897 DCB 0xF1; R0H:40087898 DCB 0xF1; R0H:40087898 DCD 0xF1; R0H:40087898 DCD 0xF1; R0H:40087898 DCD 0xF1; R0H:40087898 DCD 0xF1; R0H:40087896 DCD 0xF1;			
R0H:40087888 LDR R8, -0x81328 R0H:40087886 STRB.W R4, [SP, #0] R0H:40087896 STRB.W R4, [SP, #1] R0H:40087896 MOU R0, [SP, #4] R0H:40087896 DCB 0x6 R0H:40087896 DCB 0x7 R0H:40087896 DCB 0x6 R0H:40087896 DCB 0x6 R0H:40087896 DCB 0x6 R0H:40087896 DCB 0x78 R0H:40087896 DCB 0x74 R0H:40087896 DCB 0x74 R0H:40087896 DCB 0x71 R0H:40087896 DCB 0x71 R0H:40087896 DCB 0x71 R0H:40087896 DCB 0x61 R0H:40087896 DCB 0x61 R0H:40087896 DCB 0x61 R0H:40087896 DCB 0x62			
R0H:40087898 STRB.W R4, [SP, #8,110] R0H:4008780 STR R0, [SP, #4] R0H:40087890 MOU R0, [SP, #4] R0H:40087890 DCB BxAD R0H:40087890 DCB BxAD R0H:40087890 DCB BxAD R0H:40087891 DCB BxAD R0H:40087892 DCB BxAD R0H:40087893 DCB BxF8 R0H:40087895 DCB BxF1 R0H:40087897 DCB BxF1 R0H:40087898 DCB BxF1 R0H:40087897 DCB BxF1 R0H:40087898 DCB BxF2 R0H:40087898 DCB BxF2 R0H:40087898 DCB BxF2 R0H:400878989 DCB BxF2			
R0H:40087896 STR R0, [SP, #4] R0H:40087890 HOU R0, R0 R0H:40087890 DCB 8xAD R0H:40087892 DCB 8xAD R0H:40087893 DCB 8xAD R0H:40087895 DCB 8xAI R0H:40087895 DCB 8xAI R0H:40087896 DCB 8xFI R0H:40087895 DCB 8xFI R0H:40087896 DCB 8xFI R0H:40087896 DCB 8xFI R0H:40087897 DCB 8xFI R0H:40087898 DCB 8xFI R0H:40087898 DCB 8xFI R0H:40087898 DCB 8xFI R0H:40087896 DCB 8xFI R0H:40087896 DCB 8xFI R0H:40087896 DCB 8xFI R0H:40087896 DCB 8xFI			
R01:4087890 HOU R0, R0 R01:4087890 IOU R0, R0 R01:4087891 DC8 0xAD R01:4087892 DC8 0xAD R01:4087893 DC8 0xAD R01:4087894 DC8 0xA1 R01:4087895 DC8 0xA1 R01:4087896 DC8 0xA1 R01:4087897 DC8 0xA1 R01:4087898 DC8 0xA1 R01:4087899 DC8 0xA1 R01:4087898 DC8 0xA1 R01:4087899 DC8 0xA1 R01:4087890 DC8 0xA1 R01:4087898 DC8 0xA2 R01:4087890 DC8 0xA2			
R0H:4087890			
R01:4087892 DC8 Bx0D R01:4087893 DC8 Bx1B R01:4087894 DC8 Bx1B R01:4087895 DC8 Bx14 R01:4087895 DC8 Bx11 R01:4087896 DC8 Bx11 R01:4087896 DC8 Bx41 R01:4087896 DC8 Bx41 R01:4087896 DC8 Bx41 R01:4087898 DC8 Bx42 R01:4087895 DC8 Bx42			
R01:40087894 DCB Bx14 R01:40087895 DCB Bx14 R01:40087895 DCB Bx14 R01:40087895 DCB Bx14 R01:40087896 DCB Bx14 R01:40087897 DCB Bx14 R01:40087898 DCB Bx14 R01:40087898 DCB Bx11 R01:40087898 DCB Bx41 R01:40087898 DCB Bx42		DCB ØxAD	
R01:40877895 D08 0x41 n R01:40877896 D08 0x41 n R01:40877897 D08 0x41 n R01:40877897 Incomplete D08 D08 D08 R01:40877898 Incomplete D08 D	R0M:40087893	DCB 0xF8 ;	
R0H:40087896 Incomplete R0H:40087897 Incomplete R0H:40087898 Incomplete R0H:40087898 Disassembly R0H:40087898 Disassembly	R0M:40087894	DCB 0x14	
R01:40087897 DCB DxF1 DCB DC	R0M:40087895		A
R0H:40087898 Incomplete R0H:40087890 DCB R0H:40087890 DCB R0H:40087890 Disassembly R0H:40087890 Disassembly			
R0H:4008789B R0H:4008789C R0H:4008789C R0H:4008789C	R0M:40087897	DCB 0xF1 ;	
R0H:4008789B R0H:4008789C R0H:4008789C R0H:4008789C	ROM:40087898	Incom	nloto
R0H:4008789B R0H:4008789C R0H:4008789C R0H:4008789C	ROM:40087899		piele
ROM:4008789E DCB 0x62	RUM:4008789A	DCB 0xA1	
ROM:4008789E DCB 0x62	RUM:4008789B	DCB 0x4F ;	
ROM:4008789E DCB 0x62	KUP1:4008/89U	JISASSE	
			····
	ROM:4008789E	DCB 8x02	


Our Approach

✤ Goal

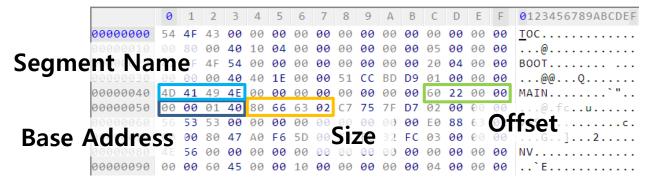
- Identify target functions for further security analysis
 - L3 decoder functions
- Requirements
 - Should load firmware into a correct memory layout
 - Should identify functions in firmware correctly
 - Should detect target functions among the identified functions
- Approach
 - Investigate firmware manually
 - Develop heuristics to satisfy the firmware analysis requirements

Firmware Analysis Overview



Analyzing Firmware File Formats

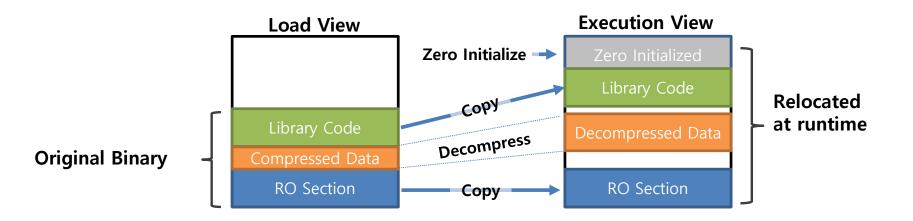
- Baseband firmware
 - Downloaded from a 3rd party website
 - Single binary over 30 MB
 - Unknown format



Baseband Firmware (Single Binary)

- ✤ Leverage binary analysis's heuristic knowledge
 - 4-byte integers often represent a base address, size, or offset

Memory Layout Analysis


- ✤ Observation
 - Access invalid memory regions
- Possible causes
 - Partial firmware
 - Special memory layout setup
- → Eventually figured out "scatter-loading"

	; CODE XRE
	; ROM:4001
BL	sub_4166046C
LDR	R0, = <mark>0x48010A8</mark>
LDR	R0, [R0]
BL	sub_416605'0
ION CHUNK	FOR sub_400100E0
=== S U B	R o Invalid
n I	lemory Region
	ichiory Region
	; CODE XRE
	; sub_4166
LDR	SP, [R0,#0×30]
LDR	R1, [R0,#0×34]
POP	{R2}
ORR	R2, R2, #0×C0
LDR	R3, = <mark>0x48010D8</mark>
LDR	R3, [R3]
CMP	R3, #0
BNE	loc_40FBB464
BIC	R2, R2, #0×C0

Scatter-Loading

- Runtime feature in ARM-based embedded devices
- Memory regions are relocated at runtime
 - Copy, Decompress, Zero-initialize memory regions
- → None of existing binary analysis approaches considered scatter-loading

Scatter-Loading Heuristics

- Observation
 - A memory layout is defined in source files
 - → Linker inserts **pre-defined table**

LOAD 0x8000 { EXEC_ROM +0 { *(+RO) } RAM +0x1000 { *(+RW,+ZI) } HEAP +0x2000 EMPTY 0x100 {} STACK +0x3000 EMPTY 0x400 {} }

- Approach
 - Find scatter-loading table
 - Detect scatter-loading functions
 - Emulate scatter-loading operations

Src Dst Size Function

unk_44260000 dword_4,scatterload_copy
Sub_4000000, unk_iDor+,scatterioau_copy
unk_4800C30, off_28,scatterload_copy
dword_4800C58, dword_3A4,scatterload_decompress
unk_100000, loc 12600,scatterload_decompress
unk_45700040, 0x1AACC0,scatterload_decompress
word_46100000, loc_58,scatterload_copy unk 46800000, loc 1030C, scatterload decompress
sub 47400000, unk 10FE68, scatterload copy
dword 47700000, unk 1020, scatterload copy
dword 4B700000, dword 4, scatterload copy
dword_4B700004, 0x889A0,scatterload_copy

→ Applicable to other ARM-based embedded devices

Function Boundary Identification

- Baseband is a complex embedded system
 - Numerous indirect calls
 - Interrupt tables, function pointers, ...
 - ARM mode (32-bit) + THUMB mode (16-bit)
 - Data appears "in" the code section
 - → More difficult than traditional function identification
- Existing approaches
 - ByteWeight (SEC'14), Shin et. al. (SEC'15), Andriesse et. al. (SEC'16, SP'17), ...
 - → Most approaches do not consider ARM/THUMB co-existing binaries
 - → State-of-the-art tool (IDA) cannot analyze (450 among 90K funcs are detected)

Function Identification Heuristics

- Identify frequent function prologues
 - Linear sweep as proposed in Andriesse et. al. (SEC'16)
 - Functions often start with a "PUSH" instruction
 - Analyze PUSH instruction
 - Different byte code in ARM/Thumb mode
 - Should contain LR register
 - Should not contain SP, PC register
 - Should contain temporary registers (e.g., R2-R4)
- Analyze Thumb-mode function pointers
 - Thumb mode function call (pointer+1)
 - Find thumb mode function pointer

sub_4066922A		; CODE XF ; sub_400
var_10 var_C	= -0x10 = -0xC	
	PUSH	{R2-R4,LR}
	CB2 CMP	к0, 10 <u>с_</u> 40669232 R0, #6
	BCC	loc_4066924C

DATA:4299A95C off_4299A95C	DCW loc_1A8+3
DATA:4299A95E	DCB Ø
DATA:4299A95F	DCB Ø
DATA:4299A960 off_4299A960	DCD_sub_415CDB90+1
DATA:4299A964 off_4299A964	DCD_sub_415CDEA8+1

Function Identification Heuristics

- Utilize debug information (logging messages)
 - Developers often include debug information
 - Analyze customized debug structure

Magic Value	DCB "DBT:"	;
	DCD 4 DCD 1	, 302.0002000.2000
Debug msg	DCD ØxFECDBA98 DCD aWarnDecodeErro	; "Warn>Decode Error: 0x%x"
Filename	DCD 0xC28 DCD asc_4156E7E0	; "//CALPSS/LteL3/LteSae/SAEMM/Code"

✤ An instruction candidate has an operand that refers to debug information

→ Should be a part of a function

CBZ	R4, loc_4168327C
LDR	R0, = <mark>DBT_41A3896C</mark> ; "DBT:"
ADDS	R0, #0x70 ; 'p'
STR	R0, [SP,#0x28+var_28]

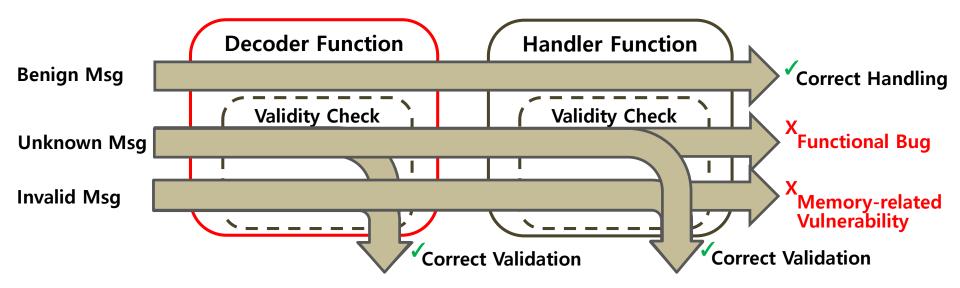
Identifying L3 Decoder Functions

- Utilize debug information (logging messages)
 - Commonly used in analyzing stripped binaries
- Search target keywords
 - "Decode", "L3", "EMM", ...
- ✤ Implement simple slicer
 - Debug information is not directly referred
 - Cache optimization
 - Slice forward to compute correct addresses
 - Analyze target keywords

4168323A	LDR	<pre>R0, =DBT_41A3896C ; "DBT:"</pre>
4168323C	ADDS	<mark>R0</mark> , #0x70 ; 'p'
4168323E	STR	K0, [SP,#0x28+abt_obj]
41683240	LDR	<mark>R0</mark> , [R7]
41683242		sub_40CD659A
41683246 Addres	ses	not directly
41683248		
4168324A	rofe	erred
4168324C	BCIIC	5ub 9000659A
41683250	CMP	
41683252		loc_4168325E
41683254		<mark>R0</mark> , [R7]
41683256		sub_40CD659A
		<mark>R0</mark> , <mark>R0</mark> , #1
4168325C	В	loc_41683260
4168325E ;		
4168325E		
4168325E loc_4168325E		
4168325E		
4168325E	MOVS	<mark>R0</mark> , #0
41683260		
41683260 loc_41683260		
41683260		R1, #0×1E1
41683264		R0 R1 R0 ISI#18
41683268	STR	
4168326A		R1, R4
4168326C		R2, =0×FECDBA98
4168326E		R0, SP
41683270	BL.W	sub_40EC166C ; "DBT:"

→ Identify functions of interest (i.e., L3 decoder functions)

Evaluation

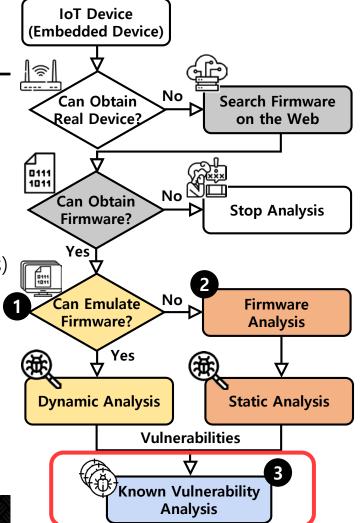

- ✤ Implemented as an IDA Pro Plugin
 - Function boundary identification
 - L3 decoder function identification

	Model	Build Date	Firmware Size (MB)	# of Funcs in Default IDA Pro	# of Funcs after Applying Heuristics	L3 Decoder Address
	Model 1	May/2020	44	452	91043	0x4113ed5a
Latest	Model 2	May/2020	44	3601	89989	0x4117e646
8 Images	Model 3	May/2020	43.8	446	89893	0x4114ca72
e magee				•••		
	Model 9	Apr/2020	37	386	66663	0x4100b0b4
	Model 1	Apr/2019	43.4	457	89789	0x411c03aa
Oldest	Model 2	Feb/2019	43.3	450	88209	0x4127b8ca
8 Images	Model 3	Feb/2019	43.1	450	80268	0x4124810e
e magee				•••		
	Model 9	Apr/2016	36.8	377	61714	0x41019c00

Security Analysis

✤ Analyze manually from the detected decoder functions

→ 5 functional bugs, 4 memory-related bugs (2 RCEs) affecting 33 messages


Conclusion and Lessons Learned

- Existing approaches
 - − Black-box testing → Need physical devices
 - Ad-hoc firmware analysis → Not scalable (≤ 10 images)
- Effectiveness of empirical analysis and developing/systematizing heuristics
 - Successfully identify function boundaries (595 → 73,874 on avg., 124 times)
 - Successfully detect target functions (0 false positive)
 - Help security analysis (9 new bugs, including 2 RCEs)
- ✤ Lessons learned
 - Developing/Systematizing Heuristics are effective and necessary
 - Baseband devices within a vendor share similar code

Analysis Roadmap

- Firmware Emulation Problem
 - Successful emulation (16.28% → 79.36%)
 - → Wireless routers, IP cameras
- Firmware Analysis Problem
 - Successful analysis (595 funcs → 73,874 funcs)
 - ➔ Smartphone baseband
- 3 Known Vulnerability Analysis Problem
 - A few studies (≤ 10)
 - ➔ Both device categories

Finding Known (Similar) Vulnerability in IoT Devices with BCSA

Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned

IEEE Transactions on Software Engineering (major revision, under review)

Dongkwan Kim, Eunsoo Kim,

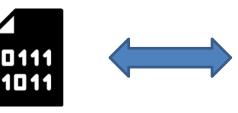
Sang Kil Cha, Sooel Son, and Yongdae Kim

Known Vulnerability Issues in IoT Devices

- Example vulnerability: CVE-2018-10106
 - Permission bypass in "cgibin" reveals users' private key
 - Parameter can be over-written with a newline character (0x0a)

- Still appears in newer device versions (D-Link)
 - CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376
- Appears in different venders (TRENDnet)
 - CVE-2018-7034
- Potential reasons
 - Improper version/update management
 - Copy and paste buggy code

Known Vulnerability Analysis


- Dynamic analysis
 - Build PoC exploits and run them
 - Require successful emulation
 - Architecture challenges (e.g., ARM, MIPS, PowerPC, Hexagon, ...)
 - ☞ Dependency issues in peripherals (e.g., Camera, LED, MMIO access, ...)
 - Require time for emulation and testing
- ✤ Static analysis
 - Match known signatures
 - Leverage Binary code similarity analysis (BCSA)
 - → Apply BCSA to find same/similar vulnerabilities in newer devices

Binary Code Similarity Analysis

Binary code similarity analysis (BCSA)

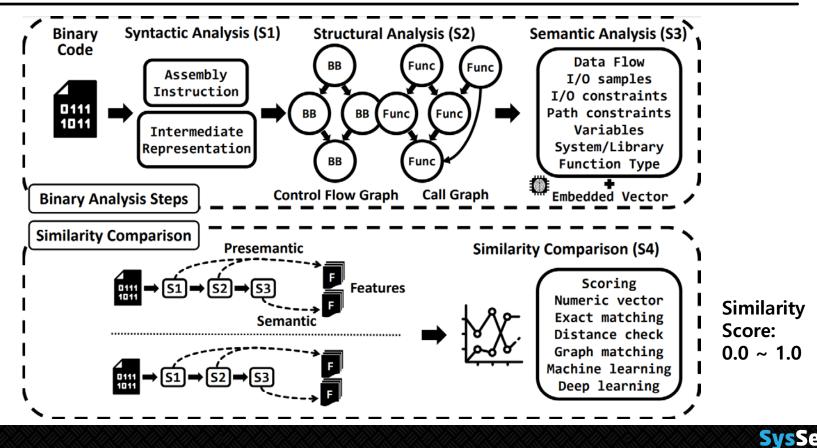
Known Binary Code A

- ✤ Popular tasks
 - Malware detection
 - Plagiarism detection
 - Authorship identification
 - Vulnerability discovery

✤ Target

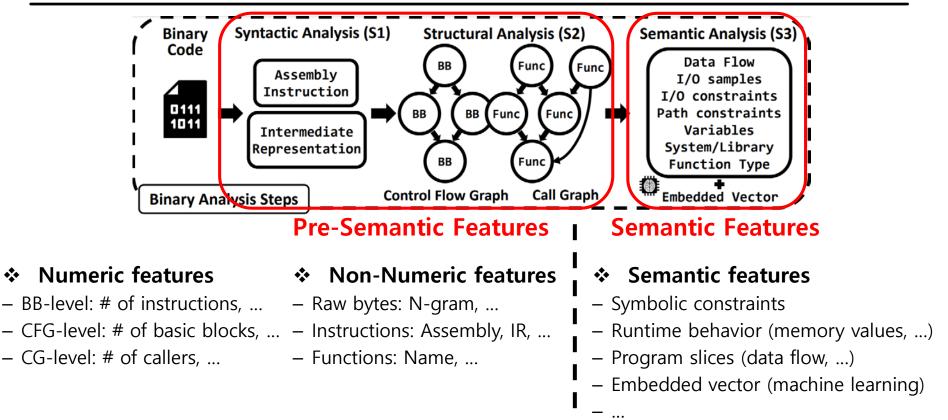
0111

1011

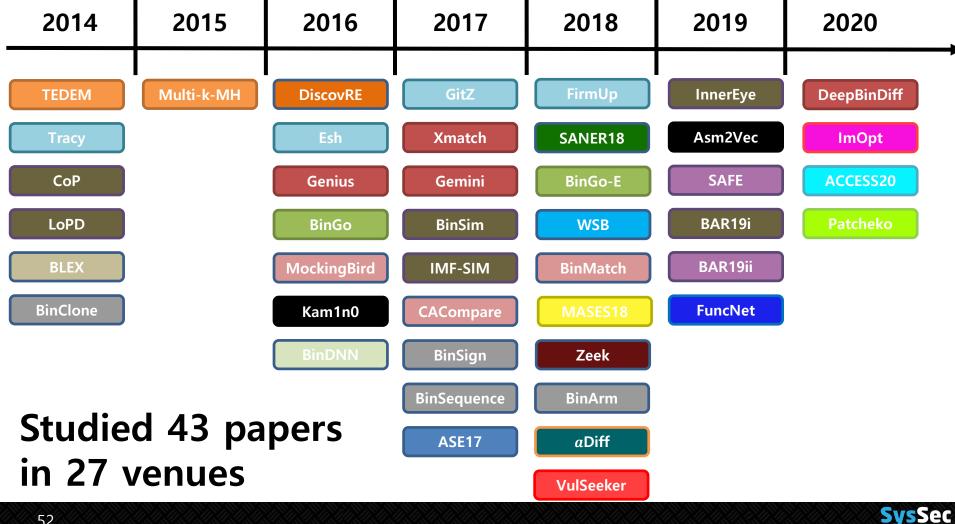

Unknown

Binary Code B

- Architecture (e.g., x86 -> ARM)
- Compiler (e.g., gcc -> clang)
- Optimization (e.g., O1 -> O3)
- Obfuscation (e.g., LLVM-Obfuscator)



BCSA Workflow



System Security Lal

BCSA Workflow

System Security Lab

BCSA Features in Previous Literature

	2014	2015	2016	2017	2018	2019	2020
	I TEDEM Tracy CoP BLEX BLEX	 Bunctone Multi-k-MH 		 (9) Binbign (9) Dinbign (9) Camini (1) GitZ (1) BinSim (2) BinSim (2) CACompare (2) ASE17 	[1] Bin Arm SANER18 SANER18 Bin Go-E WSB Bin Match MASES18 MASES	F7 InnerEye Asm2Vec Asm2Vec BaR19i BAR19i BaR19ii FuncNet	Image: Section 1Image: Section 2Section 2ACCESS20Section 3Patchecko▶ BINKIT
BB-level Numbers CFG-level Numbers CG-level Numbers	· · · · · · · · · · · · · · · · · · ·		Heavy		ex semantic fe	eatures (>	× × × • • ○ >84%)
Raw Bytes Instructions Functions	$\begin{array}{c} \cdot & \cdot & \cdot \\ \circ & \circ \\ \cdot & \cdot \\ \cdot & \cdot \end{array}$			•	→ No cle		-
Symbolic Constraints of I/O Samples Runtime Behavior Manual Annotation Program Slices, PDG Recovered Variables Embedded Vector	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•: used with machine learning

BCSA Features in Previous Literature

		2014	1		2015			20	016							201	7			_			2	2018	8			/		20	19				2020		_
	[01] TEDEM [02] Tracy		BLEX	[25] BinClone	22 Multi-k-MH	[] discovRE	[23]	USI [58]	[1] BinGo	[28 MOCKINGDIRG	22 Bin DNN	9 BinSion	1] [0 Xmatch	E Cemini	2] [12 [13] [13]	BinSim	BinSequence	[13] IMF-sim	G CACOMPARE S ASE17	4] BinArm	E SANER18	[3] BinGo-E	WSB [62] [62]	DINIVIATCH	G Zeek	dnuii [14]	αDiff Δ_1c-1	E vulseker	^[1] Asm2Vec	21] SAFE	5 BAR19i	[55] BAR19ii	S Funcivet	In Det	IS ACCESS20	[8] Patchecko	¥ BINKIT
BB-level Numbers CFG-level Numbers CG-level Numbers	· · · · ·	· · ·		0		000	•	. (: 0		· ·			0	• • •		0		 	0000	. 00	00	• •	 			· (· (} .				· (· ·			000
Raw Bytes Instructions Functions	· · 0 0	 		0				. (0	. () . (•			0		· ·	•	•	0	• •				• •	· · ·	• •	•	•				0 :		•
Symbolic Constraints .gI/O Samples	; · ·	00) •	÷	•	·	•	0	•	•	• •		С) •	•	0	•	•	•••	•	·	•	•	• •		·	•		·	·	·	•	•	• •	·	·	·
Runtime Manual Program Recovere Embedd	lea																		lea sta										· · · ·		· · · ·						•

•: used with machine learning

BCSA Dataset in Previous

*Revisiting Binary (

Literature

		Sou	rce*		Arch	itect	ture*		Opt	imiz	ation	*			C	om	piler	.†+			_	E	Extra		In	fo.
et _{Year}	Tool [Paper]	Binaries	Firmware	x86 x64	arm arch64	mips	mips64 minceb	mips64eb	88	<mark>6</mark> 6	0s Os	GCC 3	GCC4 GCC5	GCC 6	GCC 7		Clang 4	Clang 5 Clang 6	Clang 7	etc.	Total #	Noinline	LTO	Obfus.	Code	Dataset IDA
2014	TEDEM [10] Tracy [56] CoP [7] LoPD [8] BLEX [30] BinClone [57]	$ \begin{smallmatrix} 14 \\ (115) \\ (214) \\ 48 \\ 1,140 \\ 90 \end{smallmatrix} $	- - - -		· · ·) · · · · · ·) · · ·	-	-	· · ·					$ \begin{array}{c} $		· · · · · · · · · · · · · · · · · · ·	1	· · ·	· · ·		1 1 1	: 2 2 3	- - - -	· · ·	· 000·	· 0 · · · 0	· 000 · 00 · 00
2015	Multi-k-MH [22]	60	6	ο.	ο.	0	•	• •	00	0 0	ο.		2 ·		• •	1					3	•				• 0
2016	discovRE [11] Genius 23 Esh [58] BinGo [15] MockingBird [33] Kam1n0 [32] BinDNN [59]	$593 \\ (7,848) \\ (833) \\ (5,143) \\ 80 \\ 96 \\ 2,064$	8,128	00.00000		00 · · ·							$ \begin{array}{ccc} 1 & \cdot \\ 2 & \cdot \\ 3 & \cdot \\ 3 & \cdot \\ 1 & \cdot \\ 1 & \cdot \\ 1 & \cdot \\ \end{array} $		· · · · · · · · · · · · · · · · · · ·	1 2 1 1		· · ·		2 2 1	4 3 7 5 2	0	· · ·	· · ·	0.00.	
	BinSign [60] Xmatch [16] Gemini [12] GitZ [61] BinSim [62] BinSequence [34] IMF-sim [31] CACompare [35] ASE17 [63]	(31)7218,269441062(1,718)1,1407255	1 8,128	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · 00 · · 00 · ·		$\begin{array}{cccc} & \cdot & \cdot & \cdot \\ & 2 & \cdot & \cdot \\ & \cdot & 1 & \cdot \\ & 1 & \cdot & \cdot \\ & 1 & \cdot & \cdot \\ & 1 & \cdot & \cdot \end{array}$		· · · · · · · · · · · · · · · · · · ·	· 1 · 2 · . 1 1	· · · · ·	· · · · · · · · · · · · · · · · · · ·		2	2 3 1 6 · 3 2 2		· · ·	0 · · · 0 · 0 · 0	• • • • • • • • • •	· 000 · 00 · 00 · 00 · 0
2018	BinArm [17] SANER18 [64] BinGo-E [18] WSB [65] BinMatch [66] MASES18 [25] Zeek [67] FirmUp [14] αDiff [19] VulSeeker [13]	$\begin{array}{c} \cdot \\ 7 \\ (5,145) \\ (173) \\ 80 \\ 47 \\ (20,680) \\ \cdot \\ (69,989) \\ (10,512) \end{array}$	2,628					· · · · · · · · · · · · · · · · · · ·			· · · 00 · · 00 · · 00 · · 00 ·		$\begin{array}{c} \cdot & \cdot \\ 1 & 1 \\ 3 & \cdot \\ 1 & \cdot \\ \cdot & \cdot \\ 3 & \cdot \\ 2 & 1 \\ 1 & 1 \end{array}$	1	· · · · · · · · · · · · · · · · · · ·	· 1 1 1 · 4 · 2	· · · · ·	· · · · · · · · · · · · · · · · · · ·		· 1 · · · · ·	5 2 2 10 5 2	•	· · · · · · · · · · · · · · · · · · ·	· · · 0000 · · · ·		· 000 · 00
2019	InnerEye [24] Asm2Vec [20] SAFE [21] BAR19i [26] BAR19ii [29] FuncNet [68]	(844) 68 (5001) (804) (11244) (180)					-	· · ·	· 000	\sim	000000000000000000000000000000000000000	1 1	· · · 1 1 3 1 · · · 3 1 · ·	1 1	· · · 1 · · ·	· 2 2 · 2	1 1	· 1 1 1 · 1 1 ·		2	1 4 12 1 11 1		· · ·	0	0000) . . 0) 0) 0
2020 C	DeepBinDiff [27] ImOpt [69] ACCESS20 [52] Patchecke: [28] BINKIT ★	2114 18 12,000 2,108 243,128	2.)			Nc 8)	sa 88	m		1)e	en ;	IC i	h i	m	a	rk ;	(•	00	

BCSA Datase in **Previous**

Literature

		Sour	rce*		Ar	chite	ctur	e*		o	ptim	izat	ion*				С	omp	iler	*				E	xtra		In	fo.
et _{Year}	Tool [Paper]	Binaries	Firmware	x86 ~64	arm	aarch64	mips64	mipseb	mips64eb	00	5 8	ö ö	0s	GCC 3	GCC 5	GCC 6	GCC 8	Clang 3	Clang 4 Clang 5	Clang 6	Clang 7	etc.	Iotal #	Noinline	LTO	Obfus.	Code	IDA
2014	TEDEM [10] Tracy [56] CoP [7] LoPD [8] BLEX [30] BinClone [57]	${ \begin{array}{c} 14 \\ (115) \\ (214) \\ 48 \\ 1,140 \\ 90 \end{array} }$						•	•	· · 000 ·	· · 0000 ·		· · · · · · · ·		· · · 1 · 1 · 1 ·	· · · · · · · · · · · · · · · · · · ·	-	· · · 1	-	-	-	1 1 1	· 2 2 3		· · · ·	••000•••	0	000.00
2015	Multi-k-MH [22]	60	6	0 .	0	• () •	•	•	0	0 (0 0		- 1	2.	• •	•	1	•	•		• 3	3	• •	•			0
2016	discovRE [11] Genius [23] Esh [58] BinGo [15] MockingBird [33] Kam1n0 [32] BinDNN [59]	$593 \\ (7,848) \\ (833) \\ (5,143) \\ 80 \\ 96 \\ 2,064$	8,128	00.000000000000000000000000000000000000	00.00.0	· ((· () · () · ()			· · ·	00.00.0	00.00.00		0		1 · 2 · 3 · 3 · 1 · 1 ·	· · · · · · · · · · · · · · · · · · ·		1 2 1 1			· · ·	2	4 (3 7 5 2	· · ·		• • • • • •		0000000
2017	BinSign [60] Xmatch [16] Gemini [12] GitZ [61] BinSequence [34] IMF-sim [31] CACompare [35] ASE17 [63]	$(31) \\ 72 \\ 18,269 \\ 44 \\ 1062 \\ (1,718) \\ 1,140 \\ 72 \\ 55 \\ 55 \\ (31)$	1 8,128	· · · · · · · · · · · · · · · · · · ·		· ((· () · () · () · ()			• • • • • • •	· · 00 · · 000			· · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	-	1 2 1 1 1	1		· · ·	2	2 3 (1 6 · · 3 2 2		· · · ·	0 · · · 0 · 0 · 0		000.00.0
2018	BinArm [17] SANER18 [64] BinGo-E [18] WSB [65] BinMatch [66] MASES18 [25] Zeek [67] FirmUp [14] aDiff [19] VulSeeker [13]	(5, 1, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	2,000 2		0.0	y	2	r	e	e · · · · · · · · · · · · · · · · · · ·	8		e C		fu		C	1 1 4 2		as	se [®]	2 1	2 2			• • • • • • • • • •		0000.00.0000
2019	InnerEye [24] Asm2Vec [20] SAFE [21] BAR19i [26] BAR19ii [29] FuncNet [68]	(844) 68 (5001) (804) (11244) (180)		· () · () · () · ()	0.0000		· · ·			· 00 · 00	000		-	· 1 3 1 3	· · · 1 1 3 1 · · · 3 1 · ·	· · · 1 1 · · · 1 ·		· 2 2 · 2	1 1 1 1			· 1 2 1	1 4 2 1 1 1	· · ·		0.		0
2020 OC	DeepBinDiff [27] ImOpt [69] ACCESS20 [52] Patchecko [28] BINKIT ★	2114 18 12,000 2,108 243,128	: 2.	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	· · ·		· · · ·	· · · ·	00.00	0.00		· · · ·	•	1 · · 1 · ·	· · · · · 1 1	1		1 1	1	· · · 1		1 1 9 (· · · ·	· 0 · 0		

*Revisiting Binary Co

BCSA Dataset

*Revisiting Binary Co

in Previous Literature

		Sour	ce*		Α	rchit	ectu	re *		o	otim	izat	ion*				C	om	pile	er†*			_		E	xtra	۱ 	Ir	fo.
et Year	Tool [Paper]	Binaries	Firmware	x86	x64 arm	aarch64	mips mirs64	mipseb	mips64eb	00	5 6	8 8	0°s	GCC 3	GCC 5	9000 9000	000 8 000 8	Clang 3	Clang 4	Clang 5	Clang 6	Clang 7	etc. Totol #	Note: 1	DIF	OLI	Obfus.	Code	Dataset IDA
2014	TEDEM [10] Tracy [56] CoP [7] LoPD [8] BLEX [30] BinClone [57]	$ \begin{smallmatrix} 14\\(115)\\(214)\\48\\1,140\\90 \end{smallmatrix} $		0 • • •						· · 0000 ·			· · · · · · · · · · · · · · · · · · ·	· · · · 1 · 1 · 1	· · ·	-		· · · 1					· · · 1 2 1 2 1 3	2 2 3	· · ·		· · · · · · · · · · · · · · · · · · ·	· 0 · · · 0	· 00 · 00 · 0 · 00
2015	Multi-k-MH [22]	60	6	0	· C) •	0	•		0	0 0) C) •	· 2	2.	÷	• •	1	•		•		• 3	3	• •	•			· O
2016	discovRE [11] Genius [23] Esh [58] BinGo [15] MockingBird [33] Kam1n0 [32] BinDNN [59]	$593 \\ (7,848) \\ (833) \\ (5,143) \\ 80 \\ 96 \\ 2,064$	8,128	00.0000) ·) ·) ·) ·) ·	00			00 · 00 · 0	00.00			· 1 · 2 · 3 · 3 · 1 · 1			· · · · · · · · · · · · · · · · · · ·	1 2 1 1				-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (37 52 2	· · ·		· · · · · · · · · · ·	0.0.0.	• 00000000 • 0000000
2017	BinSign [60] Xmatch [16] Gemini [12] GitZ [61] BinSequence [34] IMF-sim [31] CACompare [35] ASE17 [63]	$(31) \\72 \\18,269 \\44 \\1062 \\(1,718) \\1,140 \\72 \\55 \\$	1 8,128				• • • •			· · 00 · · 0					•			· 1 · 2 · 1				-	2 2 · 3 · 1 · 6 · ·	23 (1	 		0 0 .0		· 000 · 000 · 00
2018	$\begin{array}{c} \text{MASES18} [25] \\ \text{Zeek} [67] \\ \text{FirmUp} [14] \\ \alpha \text{Diff} [19] \end{array}$	$\begin{array}{r} \cdot \\ 7 \\ (5,145) \\ (173) \\ 80 \\ 47 \\ (20,680) \\ \cdot \\ (69,989) \\ (10,512) \end{array}$	2,0	(8) (9	86 8	% %		< <	1 4	,0 a	,0 ar	0 cł	0 11 ⁻		ir C	าa tเ	ar Jr	ie e	es S	;))	Fı	,1	f	۲	a [.]	tı	ır	P	000.0.000
2019	InnerEye [24] Asm2Vec [20] SAFE [21] BAR19i [26] BAR19ii [29] FuncNet [68]	$(844) \\ 68 \\ (5001) \\ (804) \\ (11244) \\ (180)$		· · · 000	00000	· · · · · · · · · · · · · · · · · · ·				00 · 00) .		1	i 1 1	- 1 - 	2 2 2	; 1 1	i i	1 1		· 4 · 1 · 1 2 1 · 1	4 2 1 1 1				0000 · ·	
2020 OC	DeepBinDiff [27] ImOpt [69] ACCESS20 [52] Patchecko [28] BINKIT ★	2114 18 12,000 2,108 243,128	2.	000		:			· · ·	00.00	0.00		· · · 00	• 1 • • • •	1 1	1	· · · · · · 1 1		1	· · · 1	· · · i	· · · 1	· 1 · 1 · ·	1 1 9 (0	0 · ·	

BCSA Dataset in Previous

Literature

			Sou	rce*		Arch	itectu	are *		Opti	miza	ntion*				Co	mpi	ler†*				E	extra	_	Info.
Datase	t Year	Tool [Paper]	Binaries	Firmware	x86 x64	arm	mips	mips64 mipseb	mips64eb	<mark>6</mark> 6	02	Os Os	GCC 3	GCC 5	600 6	GCC 8	Clano 4	Clang 5	Clang 6	Clang 7 etc.	Total #	Noinline	LTO	Obtus.	Code Dataset IDA
vious	2014	TEDEM [10] Tracy [56] CoP [7] LoPD [8] BLEX [30] BinClone [57]	$ \begin{array}{c} 14 \\ (115) \\ (214) \\ 48 \\ 1,140 \\ 90 \end{array} $			· · ·	-	· · ·		: : 000 000	. 000.		· 1 · 1 · 1	· · · · · · · · ·	· · ·		1		•	· · · · 1 · 1 · 1	: 2 2 3				
IIRA	2015	Multi-k-MH [22]	60	6	ο.	0 .	0			0 0	0	0 · 0	- 2	2.			1 .				3				· · 0
ure	2016	discovRE [11] Genius [23] Esh [58] BinGo [15] MockingBird [33] Kam1n0 [32] BinDNN [59]	$593 \\ (7,848) \\ (833) \\ (5,143) \\ 80 \\ 96 \\ 2,064$	8,128	00 · 00 • 00 · 00 • 00		00	· · ·			00.00.0			1 · 2 · 3 · 3 · 1 ·			1 · 1 · 2 · 1 · 1 ·			· 2 · 2 · 1 · · 1 · · 1	4 3 7 5 2	0	· · ·	· () · () · ()	
	2017	BinSign [60] Xmatch [16] Gemini [12] BinSim [62] BinSequence [34] IMF-sim [31] CACompare [35] ASE17 [63]	$(31) \\ 72 \\ 18,269 \\ 44 \\ 1062 \\ (1,718) \\ 1,140 \\ 72 \\ 55 \\ (31)$	1 8,128					fo	::: 000 :::: 000 :::: 000 :::: 000 ::::::	· · · · · · · · · · · · · · · · · · ·								· · · ·	· 2 · · · · · · · ·	2 3 1 6 3	0			· · · 0 · · · 0 · · · 0 · · · ·
	2018		$\begin{array}{c} \cdot \\ (5,145) \\ (173) \\ 80 \\ 47 \\ (20,680 \\ \cdot \\ (69,989 \\ (10,512 \end{array})$	2,628 2,000 2 4,643	· 00 · 0 · 0 · 0 0 0 0 0 0 0 0 0 0 0 0					vu									na		yS 10 5 2	is	· · · ·		
	2019	InnerEye [24] Asm2Vec [20] SAFE [21] BAR19i [26] BAR19ii [29] FuncNet [68]	(844) 68 (5001) (804) (11244) (180)		· 00000 · 000	0 · · · · · · · · · · · · · · · · · · ·	· · ·	· · ·		· 0 000 · 000 000	000000			 1 1 3 1 3 1	· · · 1 1 · · 1 ·		· · · · · · · · · · · · · · · · · · ·	1 1	1 1 1	· · · · · · · · · · · · · · · · · · ·	1 4 12 1 11 11		· · · (· () (· (· (
*Revisiting Binary Coc	2020	DeepBinDiff [27] ImOpt [69] ACCESS20 [52] Patchecke. [28] BINKIT ★	2114 18 12,000 2,108 243,128	- - - 2!	· · 0000	· · ·		· · ·	· · ·	00.00	00.00		- 1	1 · • 1 • •	· · · · · 1 1	1	· · ·	· · · 1	· · · ì	· · · · · · · · · 1 ·	1 1 9				

Problems of Existing Studies

- ✤ In IoT devices, vulnerabilities can exist in
 - Libraries or utility binaries
 What BCSA studies have focused on
 - Custom binaries (mostly, CGI binaries) None of BCSA studies targeted
- Existing studies focus on only libraries or utility binaries
 - Open-source packages (e.g., OpenSSL, bash, vsftpd, ...)
 - Easy to generate training dataset
- ✤ None has analyzed custom binaries (e.g., CGI binaries)
 - No available dataset (or vulnerability details)
 - Not enough samples

Problems of Existing Studies

- ✤ No available open-source tools
 - Among 43 BCSA studies, 10 released their source code
 - Among these 10 tools,
 - Only 2 supports x86, ARM, MIPS (i.e., Gemini, VulSeeker)
 - Most IoT devices are based on ARM/MIPS
- ✤ Limitations of Gemini and VulSeeker
 - Do not have full source code
 - Based on complex machine learning → Hard to interpret/understand the results
 - How about performance?

Motivating Example: CVE-2015-1791

- VulSeeker released partial results without full source code
 - Target firmware: Tomato Cisco M10v2 (router)
 - Target vulnerability: ssl3_get_new_session_ticket in libssl.so
 - Race condition causes double free (DoS)
- Approach
 - Compile vulnerable OpenSSL package (v1.0.1f) with 48 compiler options
 - Query each of the 48 functions in the target firmware
 - Average the similarity scores for all functions
- Result
 - VulSeeker found the vulnerability at Rank 21

Enough?

Our Approach

- Fundamental problems of existing BCSA studies
 - No available dataset → Establish a baseline benchmark (BinKit)
 - Heavy use of machine learning ightarrow Develop a simple & interpretable model (TikNib)
 - − Heavy use of semantic features → Investigate pre-semantic features
- Problems of BCSA-based IoT vulnerability analysis
 - No analysis on custom binaries → Establish ground truth dataset (FirmKit)
 - No available tool & Not enough studies \rightarrow Empirically analyze firmware images

Building a Comprehensive Benchmark (BinKit)

- Compile GNU software packages
- ✤ Build ground truth by leveraging source file names and line numbers

Category	Previous Options	Our Options (Count)
Architecture	98% tested \leq 4	x86, arm ,mips, mipseb for 32, 64 bits (4x2=8)
Compiler	95% tested \leq 5	GCC: v4~v8 (5) Clang: v4~v7 (4)
Optimization	16% tested all opti-levels	O0, O1, O2, O3, Os (5)
Noinline	5% tested	Include (1)
PIE	0% tested	Include (1)
Link Time Optimization	2% tested	Include (1)
Obfuscation	26% tested	Obfuscator-LLVM (4)

Building a Comprehensive Benchmark (BinKit)

- Compile GNU software packages
- ✤ Build ground truth by leveraging source file names and line numbers

Category	Previous Options	Our Options (Count)
Architecture	98% tested ≤ 4	x86, arm ,mips, mipseb for 32, 64 bits (4x2=8)
Compiler	95% tested \leq 5	GCC: v4~v8 (5) Clang: v4~v7 (4)
Optimization	16% tested all opti-levels	O0, O1, O2, O3, Os (5)
Noinline	5% tested	Include (1)
PIE	0% tested	Include (1)
Link Time O	• • • • • •	· · · · · · · · · · · · · · · · · · ·
Obfuse 243,12	8 binaries for 36,256,3	22 functions /M (4)

Analyze Pre-Semantic Features

- ❖ Justify semantic features (84%) and machine learning (90% after 2019)
 → Cannot understand the results
- ✤ Simple pre-semantic features
 - → Can understand the results

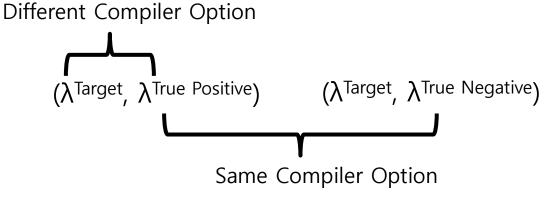
Numeric Level	Feature Category	Example
	Graphic	Basic Blocks, Edges,
	Computing	Arithmetic, Logic,
CFG-Level (41 Features)	Data Manipulating	Copy, Addressing,
(TTTCatales)	Control Transferring	Jmp, Conditional Jmp,
	Category Mixing	Arithmetic + Shifting,
CG-Level	Counting Unique	Callers, Callees, Imported Callees
(6 Features)	Including Duplicates	Incoming Calls, Outgoing Calls, Imported Calls

Design an Interpretable Model (TikNib)

- ✤ An intuitive model to easily understand the results
- ✤ Relative difference of feature *f* of function *A* and *B*

$$rdiff(A_f - Bf) = \frac{|A_f - B_f|}{|max(A_f, B_f)|}$$

- Similarity score of function A and B
 - Average of the relative differences of all features from *f1* to *fN*


$$score(A,B) = \frac{rdiff(A_{f1}, Bf_1) + \dots + rdiff(A_{fN}, BfN)}{N}$$

- Any other scoring metric can be integrated (e.g., Jaccard index)

Experiment Methodology

- There exist over 36M functions
 - → We need a fast approach to obtain the tendency
- Utilize TP/TN pairs for each function λ (same as Gemini, VulSeeker)

- ✤ Greedily select features with ROC AUC
- ✤ 10-fold cross validation for each test

																										'
		O	pt Le	vel		Comp	oiler				Ar	ch			vs.	Size	Opt [†]	v	s. Extr	a†	١	s. Ob	fus. †		Bad	‡
Exist in all 10 tests	Rand.	00 vs. O3	O2 vs. O3	Rand.	VS.	Clang v vs. Clang v	VS.	Rand.	x86 vs. ARM	VS.	ARM vs. MIPS	32 vs. 64	LE vs. BE	Rand.	O0 vs. Os	O1 vs. Os	O3 vs. Os	PIE	NoInline	LTO	BCF	FLA S	UB A	A II	Norm. V	orm. † vs. † bfus.
CFG Avg. # of edges CFG # of backedges CFG # of edges CFG # of loops CFG # of loops CFG # of callees CG # of callees CG # of callers CG # of imported calles CG # of incoming calls CG # of outgoing calls CG # of outgoing calls Inst Avg. # of arith+shift Inst Avg. # of dtransfer Inst Avg. # of dtransfer Inst Avg. # of dtransfer Inst Avg. # of logic Inst # of arith+shift Inst # of ctransfer Inst # of arith+shift Inst # of ctransfer Inst # of arith+shift Inst # of ctransfer Inst # of arith+shift Inst # of dtransfer+misc Inst # of arith+shift Inst # of dtransfer Inst # of arith Inst # of dtransfer+misc Inst # of arith Inst # of compare Inst # of compare Inst # of cond ctransfer	$\begin{array}{c} 0.33\\ 0.39\\ 0.47\\ 0.40\\ 0.41\\ 0.50\\ 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.45\\ 0.46\\ 0.52\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.19\\ 0.17\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.24\\ 0.27\\ 0.24\\ 0.27\\ 0.24\\ 0.27\\ 0.53\\ \end{array}$	$\begin{array}{c} 03\\ 0.26\\ 0.33\\ 0.37\\ 0.34\\ 0.36\\ 0.43\\ 0.40\\ 0.38\\ 0.41\\ 0.44\\ 0.16\\ 0.15\\ 0.08\\ 0.11\\ 0.23\\ 0.26\\ 0.35\\ 0.15\\ 0.26\\ 0.15\\ 0.26\\ 0.12\\ 0.42\\ 0.42\\ 0.42\\ 0.42\\ \end{array}$	$\begin{array}{c} 03\\ \hline 0.42\\ 0.63\\ 0.44\\ 0.59\\ 0.54\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.51\\ 0.28\\ 0.44\\ 0.45\\ 0.51\\ 0.59\\ 0.58\\ 0.59\\ 0.34\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\ 0.62\\$	$\begin{array}{c} 0.34\\ 0.39\\ 0.48\\ 0.40\\ 0.46\\ 0.52\\ 0.48\\ 0.47\\ 0.48\\ 0.50\\ 0.54\\ 0.30\\ 0.20\\ 0.22\\ 0.23\\ 0.21\\ 0.34\\ 0.40\\ 0.43\\ 0.30\\ 0.39\\ 0.21\\ 0.53\\ 0.54 \end{array}$	GCC vi 0.44 0.46 0.66 0.46 0.62 0.59 0.58 0.60 0.61 0.66 0.50 0.61 0.66 0.50 0.28 0.42 0.437 0.59 0.57 0.58 0.59 0.57 0.58 0.59 0.57 0.58 0.59 0.57 0.58 0.59 0.57 0.58 0.59 0.57 0.58 0.59 0.51 0.67	Clang v 0.46 0.45 0.69 0.46 0.65 0.63 0.58 0.56 0.58 0.56 0.58 0.60 0.60 0.46 0.41 0.56 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.62 0.60 0.60 0.60 0.58 0.58 0.58 0.58 0.56 0.58 0.58 0.56 0.58 0.58 0.56 0.58 0.56 0.58 0.56 0.58 0.56 0.58 0.56 0.58 0.66 0.58 0.56 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.50 0.66 0.58 0.66 0.58 0.66 0.50 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.58 0.66 0.56 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.70 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.62 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	7 Clang 0.37 0.41 0.52 0.41 0.48 0.52 0.48 0.48 0.48 0.48 0.50 0.54 0.27 0.20 0.27 0.28 0.25 0.27 0.38 0.43 0.43 0.43 0.52 0.55 0.58 0.55 0.58 0.55 0.58 0.58 0.58 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.57 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	$\begin{array}{c} 0.41\\ 0.43\\ 0.60\\ 0.44\\ 0.56\\ 0.58\\ 0.54\\ 0.52\\ 0.54\\ 0.56\\ 0.60\\ 0.39\\ 0.25\\ 0.36\\ 0.37\\ 0.33\\ 0.39\\ 0.49\\ 0.51\\ 0.51\\ 0.49\\ 0.51\\ 0.49\\ 0.62\\ 0.62\\ 0.63\\ \end{array}$	ARM 0.43 0.47 0.65 0.47 0.44 0.63 0.53 0.53 0.61 0.25 0.67 0.21 0.26 0.30 0.30 0.30 0.30 0.30 0.30 0.22 0.28 0.57 0.46 0.27 0.46 0.27 0.46 0.27 0.46 0.27 0.46 0.27 0.40 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.47 0.55 0.67 0.21 0.55 0.67 0.21 0.55 0.67 0.21 0.55 0.67 0.21 0.55 0.67 0.21 0.55 0.67 0.21 0.55 0.67 0.22 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	MIPS 0.37 0.45 0.57 0.55 0.54 0.45 0.45 0.45 0.42 0.57 0.08 0.19 0.15 0.20 0.15 0.21 0.11 0.26 0.12 0.04 0.12 0.05 0.57	MIPS 0.37 0.45 0.57 0.45 0.45 0.45 0.45 0.45 0.45 0.47 0.46 0.58 0.10 0.21 0.21 0.21 0.21 0.25 0.12 0.25 0.12 0.25 0.12 0.25 0.12 0.25 0.12 0.25 0.12 0.54 0.29 0.13 0.06 0.25 0.25 0.25 0.25 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.21 0.25 0.12 0.55 0.12 0.55 0.45 0.25 0.45 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	64 0.43 0.46 0.65 0.46 0.62 0.57 0.56 0.61 0.29 0.25 0.31 0.32 0.28 0.40 0.38 0.40 0.37 0.56 0.46 0.48 0.42 0.57 0.54 0.57 0.54 0.55 0.57 0.54 0.57 0.55 0.57 0.54 0.57 0.55 0.57 0.56 0.57 0.55 0.31 0.32 0.28 0.46 0.29 0.29 0.31 0.32 0.28 0.46 0.29 0.25 0.31 0.29 0.25 0.31 0.22 0.28 0.31 0.28 0.28 0.31 0.28 0.28 0.29 0.28 0.29 0.25 0.31 0.28 0.28 0.28 0.29 0.25 0.31 0.28 0.28 0.28 0.28 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0	BE 0.47 0.48 0.72 0.69 0.64 0.60 0.55 0.62 0.32 0.45 0.57 0.62 0.32 0.45 0.57 0.53 0.45 0.54 0.64 0.63 0.61 0.64 0.63 0.61 0.72 0.72	$\begin{array}{c} 0.41\\ 0.46\\ 0.61\\ 0.52\\ 0.57\\ 0.50\\ 0.52\\ 0.52\\ 0.52\\ 0.60\\ 0.21\\ 0.22\\ 0.25\\ 0.28\\ 0.24\\ 0.31\\ 0.27\\ 0.54\\ 0.38\\ 0.27\\ 0.15\\ 0.66\\ \end{array}$	Os 0.34 0.39 0.46 0.40 0.43 0.50 0.52 0.19 0.19 0.19 0.25 0.28 0.38 0.11 0.25 0.28 0.38 0.54 0.54	Os 0.42 0.59 0.42 0.56 0.57 0.53 0.54 0.58 0.61 0.42 0.54 0.53 0.54 0.52 0.51 0.52 0.51 0.52 0.31 0.61	03 0.366 0.388 0.522 0.399 0.503 0.503 0.504 0.488 0.505 0.411 0.222 0.350 0.361 0.362 0.364 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.480 0.480 0.482 0.482 0.482 0.482 0.482 0.522 0.511	0.45 0.50 0.71 0.50 0.57 0.58 0.64 0.49 0.30 0.45 0.46 0.49 0.30 0.45 0.46 0.49 0.30 0.45 0.64 0.55 0.64 0.55 0.64 0.55 0.57 0.58 0.64 0.55 0.57 0.58 0.64 0.55 0.57 0.58 0.64 0.55 0.57 0.58 0.64 0.55 0.57 0.58 0.64 0.49 0.30 0.45 0.45 0.49 0.40 0.45 0.40 0.45 0.40 0.40 0.45 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	$\begin{array}{c} 0.44\\ 0.40\\ 0.61\\ 0.40\\ 0.57\\ 0.57\\ 0.57\\ 0.50\\ 0.52\\ 0.50\\ 0.50\\ 0.27\\ 0.60\\ 0.27\\ 0.46\\ 0.38\\ 0.48\\ 0.56\\ 0.54\\ 0.57\\ 0.57\\ 0.57\\ 0.57\\ 0.60\\ 0.60\\ 0.60\\ \end{array}$	$\begin{array}{c} 0.40\\ 0.46\\ 0.64\\ 0.60\\ 0.57\\ 0.52\\ 0.52\\ 0.54\\ 0.55\\ 0.61\\ 0.43\\ 0.27\\ 0.38\\ 0.33\\ 0.54\\ 0.53\\ 0.51\\ 0.51\\ 0.53\\ 0.34\\ 0.64\\ 0.65\\ \end{array}$	$\begin{array}{c} 0.26\\ 0.23\\ 0.25\\ 0.23\\ 0.26\\ 0.60\\ 0.54\\ 0.53\\ 0.49\\ 0.50\\ 0.53\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.28\\ 0.26\\ 0.23\\ 0.26\\ 0.23\\ 0.26\\ 0.23\\ 0.26\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\ 0.23\\$	$\begin{array}{c} 0.34 \\ 0.08 \\ 0.08 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.54 \\ 0 \\ 0.54 \\ 0 \\ 0.54 \\ 0 \\ 0.54 \\ 0 \\ 0.54 \\ 0 \\ 0.56 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.22 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0.23 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	47 0. 47 0. 47 0. 47 0. 47 0. 47 0. 47 0. 47 0. 46 0. 55 0. 46 0. 46 0. 46 0. 47 0. 47 0. 47 0. 47 0. 47 0. 47 0. 48 0. 55 0. 44 0. 55 0. 59 0. 44 0. 55 0. 59 0. 50 0. 59 0. 50 0.	222 .10 .10 .10 .10 .56 .52 .50 .17 .12 .17 .12 .17 .12 .17 .12 .17 .12 .17 .12 .10 .09 .10 .00 .00 .50 .50 .50 .50 .50 .5	$\begin{array}{c} 0 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.33 \\ 0.26 \\ 0.33 \\ 0.26 \\ 0.33 \\ 0.26 \\ 0.33 \\ 0.06 \\ 0.37 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.037 \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.012 \\ 0.013 \\ 0.025 \\ 0.012 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\ 0.025 \\$	$\begin{array}{c} 19\\ 0.3\\ 0.6\\ 0.8\\ 0.0\\ 0.47\\ 4.41\\ 4.43\\ 4.44\\ 1.12\\ 0.7\\ 0.8\\ 0.8\\ 1.0\\ 0.5\\ 0.02\\ 0.03\\ 0.01\\ 0.01\\ 0.06\\ 0.06\\ \end{array}$
Inst # of dtransfer Inst # of float instrs. Inst # instrs. Inst # of misc Inst # of shift	0.09 0.31 0.10	0.16 0.09 0.21 0.04 0.23	0.27 0.57 0.47	0.16 0.34 0.17	0.58 0.16 0.58 0.40 0.42	0.60 0.28 0.60 0.46 0.39	0.12 0.45 0.20	0.17 0.52 0.32	0.09 0.52 0.06	0.10 0.29 0.11	$\begin{array}{c} 0.35 \\ 0.08 \\ 0.30 \\ 0.02 \\ 0.19 \end{array}$	0.17 0.48 0.36	0.32 0.62 0.67	0.11 0.42 0.19	0.09 0.18 0.04	0.22 0.52 0.29	0.23 0.47 0.27	0.27 0.60 0.47	0.23 0.55 0.44	$\begin{array}{c} 0.17 \\ 0.52 \\ 0.37 \end{array}$	0.24 0.26 0.16	0.12 0 0.22 0 0.19 0	.30 0. .56 0. .49 0.	.08 .08 .09	0.23 0. 0.00 0. 0.30 0. 0.00 0. 0.19 0.	.00 .02 .00
Avg. TP-TN Gap Avg. of Grey		0.26 0.34			0.49 0.57	0.51 0.59					0.32 0.49														0.24 0. 0.33 0.	
ROC AUC Std. of ROC AUC	0.94 0.01	0.90 0.01			0.99 0.00	1.00 0.00																		_	0.91 0. 0.02 0.	

Examples of Findings

	ROC AUC										
Architecture has a small impact											
x86 vs ARM	0.99										
x86 vs MIPS	0.98										
ARM vs MIPS	0.98										
32-bit vs 64-bit (Bits)	0.99										
Little vs Big (Endian)	1.00										

Optimization is largely	influential
O0 vs O3	0.90
O2 vs O3	0.97

Compiler version has alm	ost no effect
GCCv4 vs GCCv8	0.99
Clangv4 vs Clangv7	1.00

	ROC AUC
GCC and Clang have diverse	e characteristics
GCC vs Clang	0.96

Extra Options are less	effective
vs PIE	1.00
vs Noinline	0.97
vs LTO	0.98

O-LLVM is insufficient fo	or evaluation
vs Bogus Control Flow	0.98
vs Control Flow Flattening	0.98
vs Instruction Substitution	1.00
vs All Three Options	0.95

Pre-semantic Features Are Effective!

- VulSeeker (ASE'18)
 - State of the art using numeric features
 - Use both pre-semantic and semantic features with deep neural network
- vs VulSeeker

ROC AUC

	Ours	VulSeeker	Compilers	Arch	Packages	Dataset
	0.9661	0.99	1	3	2	ASE1
Larger Datase	0.9610	-	1	3	5	ASE2
	0.9616	0.8849	2	6	5	ASE3
	0.9450	-	9	8	5	ASE4

Case Study: Heartbleed

- Utilize TikNib to analyze Heartbleed (CVE-2014-0160)
 - Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...
- Target: tls1_process_heartbeat, dtls1_process_heartbeat
 - OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
 - Query tls1_process_heartbeat

✤ Average the similarity score rank in each option

Source option to Target option	All to All	ARM to ARM	ARM to MIPS	ARM to x86	MIPS to MIPS	MIPS to ARM	MIPS to x86	x86 to x86	x86 ^{to} ARM	x86 to MIPS	O2 to O3	O3 to O2	GCC to Clang	to	to	to	to
# of Option Pairs	552	56	64	64	56	64	64	56	64	64	144	144	144	36	36	36	36
Rank (tls, vuln)*	1.19	1.14	1.66	1	1	1.62	1	1	1.25	1	1.18	1.19	1	1.44	$\begin{array}{c} 1.06\\ 0.94 \end{array}$	1	1
Precision@1 (tls, vuln)*	0.89	0.86	0.66	1	1	0.75	1	1	0.75	1	0.9	0.89	1	0.78		1	1
Rank (dtls, vuln) [†]	4.54	9.82	11.81	3.06	2	4.72	2	2.07	1.75	3.62	4.5	4.38	2.72	3.11	5.06	3.61	3.33
Rank (tls, patched) [‡]	29.16	12.12	57.69	3.56	3.82	51.62	43.94	4.29	6.38	70.59	27.5	28.96	27.68	32.89	40.89	20.22	22.67
Rank (dtls, patched) [‡]	76.47	46.95	145.75	7.25	8.21	128	128.94	9.57	11.94	181.03	73.04	75.41	87.31	66.28	87.33	68.44	78

Case Study: Heartbleed

- Utilize TikNib to analyze Heartbleed (CVE-2014-0160)
 - Genius, Gemini, Multi-kMH, DiscovRE, SAFE, ...
- Target: tls1_process_heartbeat, dtls1_process_heartbeat
 - OpenSSL v1.0.1f (vulnerable), v1.0.1u (patched)
 - Query tls1_process_heartbeat

✤ Average the similarity score rank in each option

Source option to Target option	All to All	ARM to ARM	ARM ^{to} MIPS	ARM to x86	MIPS to MIPS	to	MIPS to x86	x86 to x86	x86 ^{to} ARM	x86 ^{to} MIPS	O2 to O3	O3 to O2	GCC ^{to} Clang	GCC v4 GCC v8	to	Clang v4 ^{to} Clang v7	to
# of Option Pairs	552	56	64	64	56	64	64	56	64	64	144	144	144	36	36	36	36
Rank (tls, vuln)* Precision@1 (tls, vuln)*	1.19 0.89				re-s	sem	anti	c f	eati	ires	wit	th a			$\begin{array}{c} 1.06\\ 0.94 \end{array}$	1 1	1 1
Rank (dtls, vuln) [†] Rank (tls, patched) [‡] Rank (dtls, patched) [‡]	4.54 29.16 76.47	40.75	sim				reta							/e!	5.06 40.89 87.33	3.61 20.22 68.44	3.33 22.67 78

Our Approach

- Fundamental problems of existing BCSA studies
 - No available dataset → Establish a baseline benchmark (BinKit)
 - Heavy use of machine learning → Develop a simple & interpretable model (TikNib)
 - − Heavy use of semantic features → Investigate pre-semantic features
 - ➔ Proper feature engineering is important
 - → Simple model with presemantic features can show promising performance
- Problems of BCSA-based IoT vulnerability analysis
 - No analysis on custom binaries → Establish ground truth dataset (FirmKit)
 - − No available tool & Not enough studies → Empirically analyze firmware images

Establishing Ground Truth Dataset

Wireless Routers, IP Cameras

- ✤ Simple custom binaries
- ✤ Target dataset
 - 1,124 firmware images
 - 52,086,995 functions
 - 267 vulnerable functions
 - 98 command injection
 - 162 information leak
 - 7 buffer overflow
 - → 19 unique vulnerabilities

Smartphone Cellular Baseband

- Complex custom binaries
- ✤ Target dataset
 - 18 firmware images
 - 1,405,959 functions
 - 56 vulnerable functions
 - 18 uninitialized pointer dereference
 - 38 buffer overflow
 - → 4 unique vulnerabilities

➔ Manually marked vulnerable function addresses

Analyzing Linux-based IoT Devices

✤ Randomly select one sample for each unique vulnerability

✤ Query it for each firmware image (1,124 images, 52M funcs)

	Original TikNib					
Top-k	# of Total Vulns	Percent				
1	141 / 267	52.81%				
5	167 / 267	62.55%				
10	182 / 267	68.16%				
50	196 / 267	73.41%				
100	196 / 267	73.41%				

Analyzing Linux-based IoT Devices

Randomly select one sample for each unique vulnerability

✤ Query it for each firmware image (1,124 images, 52M funcs)

	Original TikNib						
Top-k	# of Total Vulns	Percent					
1	141 / 267	52.81%					
5	167 / 267	62.55%					
10	182 / 267	68.16%					
50	196 / 267	73.41%					

How to increase the performance?

Failure Case Study - CVE-2015-2051

- ✤ Architecture specific issues
 - ARM -> ARM: detected at Rank 1.75 on average
 - ARM -> MIPS: detected at Rank over 1000
- ✤ Arm produces a wrapper function for a library function call (.PLT)

→ # of callees, # of imported callees, cfg_size, ...

```
v9 = 0;
memset(s, 0, sizeof(s));
v6 = getenv("HTTP_AUTHORIZATION");
haystack = getenv("HTTP_SOAPACTION");
s1 = getenv("REQUEST_METHOD");
```

ARM (Wrapper Function Call)

```
memset(v26, 0, sizeof(v26));
v4 = getenv("HTTP_AUTHORIZATION");
v5 = getenv("HTTP_SOAPACTION");
v6 = getenv("REQUEST_METHOD");
```

MIPS (External Function Call)

Failure Case Study - CVE-2017-5521

```
websGetVar(a1, "answer1", v10);
sub 155D4(a1, "answer1");
                                                               websGetVar(a1, "answer2", v11);
sub 155D4(a1, "answer2");
v4 = (const char *)acosNvramConfig get(&unk 87F8E);
                                                               v4 = (const char *)acosNvramConfig get("password answer1");
v5 = (const char *)acosNvramConfig get(&unk 87F9F);
                                                               v5 = (const char *)acosNvramConfig get("password answer2");
if ( !strcasecmp(v26, v4) && !strcasecmp(v25, v5) )
                                                               if ( !strcasecmp(v10, v4) && !strcasecmp(v11, v5) )
 if ( (int)time(0) > 0x47302D4D )
                                                                 if ( time(0) > 0x47302D4D )
                                                                                                 No such routine exists
   time(&timer);
                                                                   time(&v9);
   localtime r(&timer, &tp):
                                                                   v7 = localtime(&v9);
   v7 = (const char *)sub 6A460("language");
                                                                   v8 = asctime(v7);
   if ( !strcmp("Japanese", v7) )
                                                                   strcpy(v12, v8);
                                                                   acosNvramConfig set("timestamp of last recovery", v12);
     tm year = tp.tm year;
     v13 = sub 15FE8("year");
     v14 = tm year + 1900;
                                                                 else
     if ( tp.tm_mon )
                                                                   acosNvramConfig set("timestamp of last recovery", "");
       switch ( tp.tm mon )
                                                                acosNvramConfig save();
         case 1:
                                                                 sendPage2Client("MNU accessPassword recovered.htm", a2);
          v15 = "month feb";
          break:
                                                               else
         case 2:
           v15 = "month mar";
                                                                 sendPage2Client("MNU accessUnauthorized checkAnswerAgain.htm", a2);
           break;
         case 3:
                                                               return 0:
           v15 = "month apr";
           break:
         case 4:
           v15 = "month may";
                                              Different version has an
           break:
         case 5:
                                             additional check routine
           v15 = "month jun";
```


Failure Case Study - CVE-2017-5521

Developing Heuristic Features

- Leverage heuristic knowledge of binary analysts
- ✤ IoT binaries often contain function names
 - Use caller and callee names (i.e., internal and library function names)
- ✤ Data strings often contain useful information
 - CGI binaries parse URLs with hard-coded strings
 - "HTTP", "POST", "answer1", "password", ...
 - Use words in a string
- Compare each word with Jaccard index
 - The score is merged with TikNib

 $Jaccard(A,B) = \frac{|A \cap B|}{|A \cup B|}$

Final Results of Linux-based IoT Devices

Randomly select one sample for each unique vulnerability

✤ Query it for each firmware image (1,124 images, 52M funcs)

	Original	TikNib (+Heuristic Features		
Top-k	# of Total Vulns	Percent	# of Total Vulns	Percent
1	141 / 267	52.81%	263 / 267	98.50%
5	167 / 267	62.55%	263 / 267	98.50%
10	182 / 267	68.16%	266 / 267	99.63%
50	196 / 267	73.41%	266 / 267	99.63%
100	196 / 267	73.41%	267 / 267	100%

				Vendor							Arch	:		
Vulnerability [†]	Range	# of Funcs	Vuln†	Netgear	D-Link	TRENDnet	Belkin	Asus	ZyXEL	Linksys	arm	mips	mipseb	Binary
CVE-2016-6277	0.95-1.00	29 (3)	V	~							~			/usr/sbin/httpd
(104)	0.5-0.95	40 (-)	Р	✓	1	1		1	1	1	✓	1		/usr/sbin/httpd
	0.81-1.00 0.68-0.73	5 (4) 25 (-)	V P	1	4	1	1	1	1	1	\$	1	1	/htdocs/cgibin /htdocs/cgibin
CVE-2015-2051 (619)	0.58-0.75 0.53-0.59	6 (5) 3 (-)	V P	÷	4	√ .	÷	÷	1	÷	1	√ √	:	/htdocs/cgibin /htdocs/cgibin
	0.68 0.58–0.69	1 (-) 15 (14)	P V		~~						1		~~	/htdocs/cgibin /htdocs/cgibin
	0.53	9 (-) 17 (-)	P P		*			-	-	-	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/htdocs/cgibin /usr/sbin/upnpkits
CVE-2017-7240	0.95-1.00	3 (3)	v				✓					✓		/usr/sbin/httpd
(118)	0.54-0.83 0.50-0.53	6 (-) 23 (-)	N N	÷	1	1	·	✓	✓	· ✓	1	~	✓	/usr/sbin/httpd /usr/sbin/httpd
CVE-2018-10106	0.99-1.00 0.48-0.86	45 (42) 42 (41)	v v	1	4	×.	1	1	1	1		×	<i>×</i>	/htdcos/cgibin /htdocs/cgibin
(2)	0.48-0.86	42 (41) 5 (-)	P	-	~	1	1	1	-		¥	× ✓	× ✓	/htdocs/cgibin
CVE-2014-2962	0.96-1.00 0.66-0.86	2 (2) 13 (0)	v v		1		~~	1	1		1		~~	/usr/www/cgi-bin/webproc /usr/www/cgi-bin/webproc
(510)	0.53	13(0)	P	~	1		·	1	1	1	1	✓	·	/usr/www/cgi-bin/webproc
	0.86–1.00 0.96	43 (40) 1 (-)	V P	2	√	4	1	1	1	1	1	1	<i>\</i>	/htdocs/cgibin /htdocs/cgibin
CVE-2020-15893	0.85	17 (12)	v		1						÷	~	~	/usr/sbin/upnpkits
(2)	0.82 0.74–0.81 0.52	7 (7) 42 (-) 1 (1)	V P V	÷	4	÷	÷	÷	÷	÷	<i>×</i> <i>×</i>			/htdocs/cgibin /htdocs/cgibin /htdocs/cgibin
	0.92	11 (1)	v		× ~							✓	•	/bin/alphapd
CVE-2016-11021	0.97	2 (2)	V P		1							1		/bin/goahead
(804)	0.67-0.75 0.60-0.67	21 (-) 9 (0)	V	1	1	×.	1	1	1	1	1	~	1	/bin/alphapd /bin/alphapd
	0.59 0.50–0.59	1 (-) 18 (-)	P N	1		` .	1	1	1	1	1	<i>\</i>	1	/bin/alphapd /bin/alphapd
CVE-2017-6077 (186)	0.85-1.00 0.5-0.85	2 (2) 1 (0)	VVV	< <		:	:	:	:	:	:		 ✓ ✓ 	/usr/sbin/httpd /usr/sbin/httpd
	0.72-1.00	7 (3)	V				✓					✓		/usr/sbin/httpd
CVE-2012-2765 (37)	0.66 0.58	1 (-) 2 (0)	P V	1	1	1	4	1	1	1	1	<i>\</i>	1	/usr/sbin/httpd /usr/sbin/httpd
(27)	0.58	2 (0) 1 (-)	Ň	-				-		√	1	¥ ✓		/usr/sbin/httpd
Linksys (53)	0.72-1.00 0.53-0.64	10 (1) 7 (-)	V P		1	1	1			<i>\</i>	1	\$ \$:	/usr/sbin/httpd /usr/sbin/httpd
CVE-2017-5521	0.98–1.00 0.74–0.83	40 (26) 73 (-)	V P	<i>\</i>	1	1	1	1	1	1	۲ ۲	1	:	/usr/sbin/httpd /usr/sbin/httpd
(99, Stage 1)	0.79	2(0)	V*	1							✓	•		/usr/sbin/httpd
	0.51-0.52	11 (9)	V U	✓ ✓	•	•	•	•	•	•	•	✓ ✓	•	/usr/sbin/httpd 22 different binaries
	0.98-1.00	79 (26)	v	✓ ✓	×	×	×	×	×	×	× ✓	×	×	/usr/sbin/httpd
	0.76-0.92	36 (-)	Р	✓							~			/usr/sbin/httpd
CVE-2017-5521 (99, Stage2)	0.74-0.78 0.68-0.73	24 (6) 9 (-)	V P	4	1	1	1	1	1	1	1	<i>~</i>	1	/usr/sbin/httpd /usr/sbin/httpd
	0.51-0.53 0.51-0.51	3 (-) 1 (-)	N P	1	1	1	1	1	1	1	1		√	/usr/sbin/httpd /usr/sbin/upnpd
	0.51-0.51	14 (3)	r V	v √								× ✓		/usr/sbin/upnpd
		/												

<u> </u>	From V.	Anapert 1	Ann 1	Base V	E 7	Anti	Verifier 1	Phonese V	Y Y Y Y
64	1 8418	TRUE	Salation	10.0.2016.8	Autorities (Kilgel)	40,32	and growth	8780.VID.8.10,453.7	
-	8.8410	-	Saltines.	tak, most	Anisolate Anipul	410,55		\$10.010 VI.0.02 10.012	
246	1.0012	In	or	ted	bv	S	mı	larity	score
-	1.00.02		The Table of L		NJ			ATTENDED AT A LONG	
	1 10 11		Da1218844	ma THEF	And the Print of	11	ariges.	BRIDT VILLED AT 1212	
12	1.1010	WALSE.	2437788	mik_27+18	Anter San Period	410.32		HERE VI D.S. 10, 1 4, 26	
20	1.161.101	01430	De LEBBLE	100 (STREE	Annual Colori	410,32		Beath 91,513 20, 13,11	
10	1.10(43)	44730	the late to be	wa_DCRO	Autorities (Kilgel)	410,32	and group	erton: v1 2.4 28_2 1.44	
100	1.8442	**1.33	Dalifiand.	task_SBACE	Automater Arriged	414,52	entgeer	HADD V103 RL 1071 HADD V103 6 113	
	1 8942	441.80	Dall Think	we store	hour inferentiated	4 10 32	andgest	R7500 V104 0 1187	
1	1.00.02	PALES	2+26/01	100,30234	hearthrank and	am.,32	- type	STERCHLER TE CARL	
1.1	1.16.10		0431708	ma, 274 28	And the second second	410,32	antipeer	R0001/V1010-00_11030	
11	1.1010	WALKE.	Setting.	int_BCH	Anter Sales Rolland	410,35	ai igear	BRANE VI D. 2 24, 40 0.26	
428	1.161.12	144130	5+18124	100,38124	Annalis Relati	400,32	erigter-	RED: VI.L.2 44, 15.82	
17	1.10103	*****	Saltina Dali'illi	task_200ECC	Autorities (hillight)	410,32 410,22		HILDE VID.0 28, 1313 HILDE VID.0 28, 1313	
-	I MAD		Dall'ille	44.4, 279 2.8 14.6, 279 2.8	And a fighter that shall be seen in the second seco	am 32	andgeser andgeser	R08000 V1 0 2 28 1 0 41	
4.0	1 80 42	AALED	DA.2280	WA TINFT	Ante-Salar-Millard	4	entges!	Reador V1.0.0.14_1.0.8	
-	3.96.83	PALES	Salttill.	100.27122	And the Subscription	10.00.32	-	RTROD VI # 1 4 12 # 12	Vulnerable
ciz .	3.36.92	*****	Salting	ma_BCHR	Any Statistics	477,33	artigen:	NUMBER 10.01.01.01.01.01.01	V unici unic
14	1.1010	WALSE!	fattelle.	468,22202	Northin World	410,35	-	HISC \$1 10110-000	
13	3.86.92	144130	2412784	100,37983	Annanchipi	410,32		MERC /1.2.28, 1.9.61	
18	1.0042	*****	Salition .	talk 20123	Autoritation (Autoritation)	410,33		WERE VILLAN, LANS	
	1.0040	94130	Ballpade.	we style	Autoritation for April	am 32	andgeser andgeser	R08000191-0.0.28, 1.0.18	
11	1 8183	AALBO	Dallin Dallin	WA THAT	Ana Sarahigal	400.32	antype:	HH400 V1.0.1 4, 10.4	
10	1.9129	PAUE	1	100 20191	And Manhood	am. 33	-	STREVISION NO.1	
	5.4179	PALAN	042000	10.8,30718	weight weight	40,33	author.	HIGHLY1, N.A. 8, 18, 111	
84	8.8475	PALER	242138	ask_\$1080	And March 191	410,35	and grown	READVILLA B. HL.L.13	
	8.8472	PALES	5+317+8 5+32+48	000.217A8	Annual Artist	ater, 32.	eriyteri	642001/01.014 12 _10.1.18 64200/01.014.02 10 120	
422	CALTS.	PALSE	Latitude.	task 20100	Auto Address for Special	are 32	nolyme-	REDELVERA 31, 10 1.31	
	0.421	WALKS.	0+34714	100.36516	Auto Marchilard	31	and given	ReaD VID 1 H 1518	
181	108.0	AAL BO	Sallinda	100.381/24	Ante Mary Wilson	400,32	antype)	RATIO-1-V13 281, 123 M	
111	1.027	PALSE	3430148	10.0,303.0.0	Ana Advertisiana	40.31		Reatting VI & 2 Ht _ 10 R &	
60	1.010	PALED	2+34734	ma;38130	Any Section (Bridges)	10,00	and given	REEM.V1.0.2 TH., 1 2.00	Patched
	8.4385	PALED	Sellina.R	1000_385C6	And March, Spill	414,35	antyper	HERE VILLE N. 1219	i atoneu
	1 4241	PALSO	1437940	1008_38P02	Annual Artist	are ,32.	ariyee:	HARD VID. 3 10 18.82	
181	1.1341	PALSE	DADRUTE:	MA. 89510	Auto Address of the Agend	10, 10	an Apren	HARDO VI.D.2 (02,1-0.94	
122	2 43 55	*****	0,080%	we, 18079	hete March Iged	are.31	and your	HT300 91 0.8 68_1 8.34	
438	1.4313	441.80	5+34+10	100,200 III	Ante Salary Wright	400,32	antipee-	RADOLVID 2 122_12.88	
29	8.8101	PALEE	Saladiti	STRAG, SAME	Ana Alex Delate	4.00_32	and and	NTER VIAT/0_128	
11	1.000	PALES	Subline .	10.0,70743 10.0,70743	Anterfaint Bright	are 32	and given	#100/01/07/01/12/2 #100/01/07/8_1284	
14	1 4241	PALED	Dalitifi-	Intel and	hartischiel	are .32.	and grant	NUTRE VIET N. 10024	
-	1 41 61	PALES	5431374	mak, 27374	Auto-Sales Autoria	419.33	and your	HARDING 1 1 1 2 24-1 1 1 1	
AC)	1.131	**1.55	Delition	task, 278.51	Auto Nate (Brillion)	12, 110	milipeter	######################################	
101	2 43 53	441.83	0.431364	100 ST288	hote Marchilard	act.32	and groups	#1800 V1 0.1 8, 10 0.14	
14	1.4303	*#1.80	1+3+2+0	MB_35292	Ante Mary Bridgel	400,32	antigear	PR/00/10.120_01832	
ind An	8.8303	PALES	1+27-46	46.8_277234 46.8_39C20	Another Bright	am.,32 am.,32	and an	HUDD VT A.3.00_3.1.21 HUTMLV1.0.1.00_15.0.20	
10	1.4101	PALES	2+29-20	mak 20128	And the delay	are 32	antigener	REPORTED IN COST	
20	1.0201	PALES	Dale781A	100,77575	hertischiel	are .32.	and grant	RT800.01.0.1.02_10.0.17	
34	1 4141	PAL30	SAURT11	108,28018	Autoritation (A) (grid	410,33	-	HARDIN VI 1 3 44, 1 1 30	
178	1.1003	PALSE.	Dallowed.	tash_3038.4	Auto Material and	10,000	endquar	######################################	
284	11 40 010	WALSE!	1.5.48	000_30393	hote March I and	are.32	and growth	HATOD VID 1 AR_10 D de	
174	1.4313	*41.80	Data Add	100_30408 100_00_000	And Sherifeland	4-00,32	antype)	RTS00 V1.0 A 34, 15 2 34 RTS00 V1.0 A 34, 15 2 34	
881	1.001	PALES	Tales in	test 30.0FC	Any tax in the	am .32	and great	RTDDP VILLIAN ULLE	
181	1.4101	PALER	Laborator.	tell, march	And the designation	410,35	and great	###COP VI 2.144_00.121	
109	1.63.03	P#41800	Selectly.	100 A. M. A.	Ann Gardeland	are 32.		REDOCTOR. 18, 10 1.44	
1.0	8.8187	P(4130	fals/w0	108,31780	Auto-520-76/5pt	410,33	- date	RATE VILL 22, 111.33	
42	0.7188	**1.55	2+2161	tash_Salar	Auto Materia April	10, 10	endpoor	Read to 1.01 (20) 1.01 18	
04	8.71et	PALES AALES	5+3480 5+34810	10.0, 30101 10.0, 30613	Auto March (god)	400,32	andgeser andgeser	Holdon 91 0.1 30 130 17 Holdon 91 0.1 30 130 17	
		and i star	No. Design.	The second	and the second		and the second	PROPERTY OF A REAL	
124	5.3438	491.80	Is/esla	wa_ware	issue fully a	470,220	40.4	DIN HER PREMARE, 1.12	
171	0.423	***	1410384	sok_10081	And Siles Surged			6.57000 V1.5 1.66_1 0.0 120	
184	0.428	**1.85	0.410384	son_30564	Ante Mitte Augersed		***	LONDO VI & LAN_1 122	
11	8.4128	P(4180	3+31425	ank_and_shi		+= ,32	handed.	TEW #7104U_1.5K_Open TEW #1004U_2.0K_Demi	
100	3.4784	PALSE	0+1700X	and add off	Mathematication and Anticident An	am,32 am,32	handed and good	Readona V18.3.13 10.1.1	
28						am 32	migna-	REGISTER VIEWS 100.77	
10	1.0184	PAL 80	Sall Tank	said TARK					
108 168 173	1,0184	PALES	Saltant Saltant	son_TABL	And Marchingel	am,12	- land	ACTING VILLAR, ISS. IT	Not Related

* BCSA can distinguish vulnerabilities from the patched ones

Case Study of CVE-2016-6277

- Command injection in CGI parsing (NETGEAR)
- Simple patch based on a block list

if (!strchr(<mark>uni</mark>, ';') && !strchr(<mark>uni</mark>, '`') && !strchr(<mark>uni</mark>, '\$') && !strstr(<mark>uni</mark>, "..")) {

Range	# of Samples	Is Vulnerable?	Vendor	Arch
0.95 ~ 1.00	29 (3 Ground Truths)	Vulnerable	Netgear	ARM
0.5 ~ 0.95	40	Patched	Netgear	ARM

self.http_request(
 method="GET",
 path=path

Case Study of CVE-2015-2051

- Command injection in HNAP cgibin, D-Link
 - No parameter check, no authentication

/htdocs/cgibin

Range	# of Samples	Is Vulnerable?	Vender	Arch	
0.81 ~ 1.00	5 (4 Ground Truths)	Vulnerable	D-Link	ARM	
0.68 ~ 0.73	25	Patched	D-Link	ARM	
0.58 ~ 0.75	6 (5 Ground Truths)	Vulnerable	D-Link, TRENDnet	MIPS	
0.53 ~ 0.59	3	Patched	D-Link	MIPS	
0.68	1	Patched	D-Link	MIPSEB	
0.58 ~ 0.69	15 (14 Ground Truths)	Vulnerable	D-Link	MIPSEB	
0.53	9	Patched	D-Link	MIPSEB	
0.49 ~ 0.53	17	Patched	D-Link	MIPS, MIPSEB	➡
				/usr/sbin/u	pnpkits

Case Study of CVE-2017-7240

- Directory traversal in CGI parsing
- DD-WRT's httpd
 - Designed to accept only allowed file types
 - Customized images allow all file types

response = self.http_request(
 method="GET",
 path="/etc/passwd"

Range	# of Samples	Is Vulnerable?	Vendors
0.95 ~ 1.00	3 (3 Ground Truths)	Vulnerable	Belkin
0.54 ~ 0.83	6	Not Vulnerable	Belkin
0.50 ~ 0.53	23	Not Vulnerable	Asus, ZyXEL, linksys

- ✤ The vulnerability resides in the data section, but BCSA found it
- → BCSA can detect diversities in compile environments

Case Study of CVE-2018-10106

Permission bypass with a newline (AUTHORIZED_GROUP)

Range	# of Samples	Is Vulnerable?	Vendor
0.99 ~ 1.00	45 (42 Ground Truths)	Vulnerable	D-Link, TRENDnet
0.49 0.96	42 (41 Ground Truths)	Vulnerable	D-Link
0.48 ~ 0.86	5	Patched	D-Link

- Same vulnerability appears in new **versions** (D-Link)
 - CVE-2018-10106, CVE-2019-17506, CVE-2019-20213, CVE-2020-9376
- Same vulnerability appears in different vendors (TRENDnet, with score: 1.0)
 CVE-2018-7034
- Same vulnerability appears in different **architectures** (MIPS, MIPSEB, ARM)
 - MIPS: 0.65~1, ARM: 0.5~0.6

Case Study of CVE-2014-2962

Directory traversal in parsing a "getpage" parameter in CGI

Range	# of Samples	Is Vulnerable?	Vender
0.96 ~ 1.00	2 (2 Ground Truths)	Vulnerable	Belkin
0.66 ~ 0.86	13	Potentially Vulnerable	Belkin, TRENDnet, Netgear
0.53	1	Patched	Netgear

- Similar/same vulnerability has existed from 2006 in multiple vendors
 - CVE-2006-2337 D-Link
 - CVE-2006-5607 Inca
 - CVE-2006-5536 D-Link
 - CVE-2014-2962 Belkin
 - CVE-2015-7250 Zte
 - CVE-2017-15647 Fiberhome
 - CVE-2017-8770 Twsz

Case Study of CVE-2020-15893

Command injection in parsing SSDP parameters in "/htdocs/cgibin"

Range	# of Samples	Is Vulnerable?	Vender	Arch
0.86 ~ 1.00	43 (40 Ground Truths)	Vulnerable	D-Link, TRENDnet	MIPS, MIPSEB
0.96	1	Patched	TRENDnet	MIPS, MIPSEB
0.85	17 (12 Ground Truths)	Vulnerable	D-Link	/usr/sbin/upnpkits
0.82	7 (7 Ground Truths)	Vulnerable	D-Link	ARM
0.74 ~ 0.81	42	Patched	D-Link	MIPS, MIPSEB, ARM
0.52	1 (1 Ground Truth)	Vulnerable	D-Link	MIPSEB

- Same vulnerability has multiple CVE (D-Link)
 - CVE-2019-20015, CVE-2019-20016, CVE-2019-20017
- Same vulnerability appears in newer versions (D-Link)
 - CVE-2020-15893, CVE-2021-29379

A debugging routine exists _dtrace()

Case Study of CVE-2016-11021

Command injection in a debugging feature

Range	# of Samples	Is Vulnerable?	Vender
0.97 ~ 1.00	13 (3 Ground Truths)	Vulnerable	2 goahead servers
0.67 ~ 0.75	21	Patched	D-Link, TRENDnet
0.60 ~ 0.67	9 (0 Ground Truths)	Vulnerable	D-Link Static
0.59	1	Patched	TRENDnet binaries
0.50 ~ 0.59	18	Not Vulnerable	D-Link

- D-Link images mostly use "/bin/alphapd"
 - Some use "/bin/goahead" with the same vulnerability
 - GoAhead, an open-source embedded webserver
 - D-Link customized GoAhead

Case Study of Linksys Vuln.

- Command injection vulnerability
 - Testing function calls the vulnerable function
 - After authentication, the vulnerable function can be called

Range	# of Samples	Is Vulnerable?	Vendor	Arch
0.72 ~ 1.00	10 (1 Ground Truths)	Vulnerable	Linksys	MIPS

- 2 images are **vulnerable**
- 3 images removed the test function, but still **vulnerable** after auth.
- 5 images removed the vulnerable function call (actually **not vulnerable**)

Range	# of Samples	Is Vulnerable?	Vendor	Arch
0.53 ~ 0.64	7	Patched	Linksys	MIPS

Added sanitizer to validate input strings

Final Results of Baseband Software

- Preprocess firmware images with the firmware analysis heuristics
- ✤ Randomly select one sample for each unique vulnerability
- ✤ Query it for each firmware image (18 images, 1.4M funcs)

	Original	TikNib	TikNib (+Heuristic Feature		
Top-k	# of Total Vulns	Percent	# of Total Vulns	Percent	
1	36 / 56	64.29%	48 / 56	85.71%	
5	41 / 56	73.21%	49 / 56	87.50%	
10	41 / 56	73.21%	49 / 56	87.50%	
50	42 / 56	75.00%	50 / 56	89.29%	
100	44 / 56	78.57%	52 / 56	92.86%	

Analyzing Open-Source Vulnerabilities

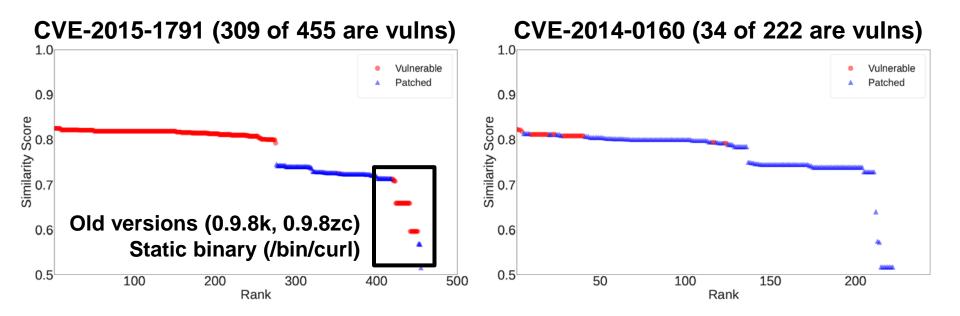
- Two well-known OpenSSL vulnerabilities
 - CVE-2015-1791: *ssl3_get_new_session_ticket*
 - Genius, Gemini, VulSeeker
 - CVE-2014-0160: *tls1_process_heartbeat*
 - Genius, Gemini, Multi-kMH, DiscovRE, SAFE
- ✤ Approach
 - Compile OpenSSL v1.0.1f with combinations of compiler options
 - Search all compiled functions in each firmware image
 - Average the similarity score for each function in each firmware image
- Ground truth
 - Match a function name and version string
 - CVE-2015-1791: 309 of 455 are vulnerable
 - CVE 2014-0160: 34 of 222 are vulnerable

SSLv2 part of OpenSSL 1.0.1c 10 May 2012 SSLv3 part of OpenSSL 1.0.1c 10 May 2012 TLSv1 part of OpenSSL 1.0.1c 10 May 2012 DTLSv1 part of OpenSSL 1.0.1c 10 May 2012

Version strings in *libssl.so*

Final Results of Two CVEs (Only Vulns)

_		Original	TikNib		TikNib + Heuri	stic Features
6	Top-k	# of Vulns	Percent		# of Vulns	Percent
	1	252 / 309	81.55%		309 / 309	100%
ן ק	5	284 / 309	91.91%		309 / 309	100%
	10	293 / 309	94.82%		309 / 309	100%
لنا د<	50	294 / 309	95.15%	,	309 / 309	100%
د	100	294 / 309	95.15%		309 / 309	100%
00	Top-k	# of Vulns	Percent		# of Vulns	Percent
	1	4 / 34	11.76%		34 / 34	100%
	5	17 / 34	50.00%		34 / 34	100%
	10	17 / 34	50.00%		34 / 34	100%
	50	32 / 34	94.12%		34 / 34	100%
5	100	34 / 34	100%		34 / 34	100%


Final Results of Two CVEs (Inc. Patched)

-		Original	TikNib	_	TikNib + Heuri	stic Features
91	Top-k	# of Funcs	Percent		# of Funcs	Percent
17	1	252 / 455	55.38%		455 / 455	100%
15-	5	284 / 455	62.42%		455 / 455	100%
-20	10	293 / 455	64.40%		455 / 455	100%
Щ Х	50	337 / 455	74.07%	,	455 / 455	100%
ΰ	100	382 / 455	83.96%		455 / 455	100%
60	Top-k	# of Funcs	Percent		# of Funcs	Percent
-	1	7 / 222	3.15%		215 / 222	96.85 %
14-01	5	29 / 222	13.06%		215 / 222	96.85%
20	10	44 / 222	19.82%		222 / 222	100%
Ч,	50	110 / 222	49.55%	F	222 / 222	100%
บ	100	158 / 222	71.17%		222 / 222	100%

Similarity Score (Vulnerable vs Patched)

- Vulnerable functions are ranked higher than patched functions
 - Queried OpenSSL v1.0.1f

Comparison Results of CVE-2015-1791

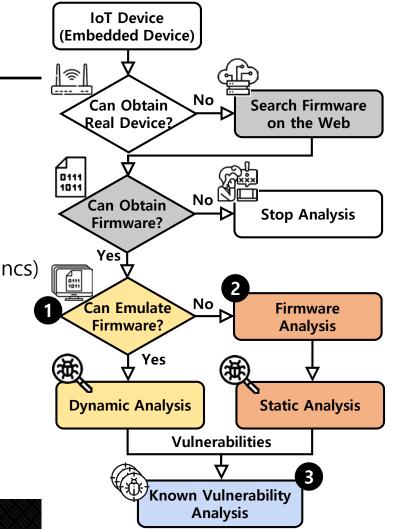
- Top-k results of all functions in all firmware images (*NOT* each image)
- Gemini and VulSeeker utilized 4643 firmware images (unavailable)
- TikNib utilized 1,124 firmware images (FirmAE)

	Ger	nini	VulSe	eeker		Nib ·O3)		Nib -O3)		Nib ristics)
Top-k	# of Funcs	%	# of Funcs	%	# of Funcs	%	# of Funcs	%	# of Funcs	%
1	1	100%	1	100%	1	100%	1	100%	1	100%
5	2	40%	3	60%	5	100%	5	100%	5	100%
10	4	40%	6	60%	9	90%	10	100%	10	100%
50	36	72%	41	82%	19	38%	46	92%	50	100%
100	75	75%	83	83%	50	50%	82	82%	100	100%

Firmware images are highly likely compiled with O2-O3

Limitation and Future Works

- Developing other effective features
 - Type recovery (NDSS'11, SIGPLAN'13, SEC'17, CCS'18, ...)
 - Type-related features are effective
 - # of arguments, each argument type, function return type
 - All benchmark tests achieved ROC AUC close to 1.0
 - Inter-procedural analysis
 - Optimization affects function in-lining
 - Inter-binary analysis
 - Handle static binaries
- Determining whether a detected function is indeed vulnerable
 - Function-level: e.g., leverage symbolic execution
 - Binary-level: e.g., emulate a target binary and check dynamically
 - Firmware-level: e.g., analyze vulnerabilities spread over multiple binaries
 - → Leave as future work


Conclusion and Lessons Learned

- Existing studies focused on complex and novel approaches without releasing neither dataset nor full source code
 - Systematized terms, features, benchmarks in existing literature
 - Built a comprehensive benchmark (BinKit)
 - → Demonstrated a simple model with pre-semantic features (TikNib) is effective!
- ✤ A few analyzed IoT devices, none targeted custom binaries
 - Established IoT vulnerability ground truth dataset (FirmKit)
 - Systematized heuristic features into TikNib
 - Successfully identified vulnerabilities (442 in custom binaries, 343 in OpenSSL libraries)
 - ➔ BCSA is effective in IoT vulnerability analysis as many devices share similar codebases

Analysis Roadmap

- Firmware Emulation Problem
 - Successful emulation (16.28% → 79.36%)
 - → Wireless routers, IP cameras
- Firmware Analysis Problem
 - Successful analysis (595 funcs → 73,874 funcs)
 - → Smartphone baseband
- 3 Known Vulnerability Analysis Problem
 - Effective bug discovery (253 → 442)
 - → Both device categories

Thesis Conclusion

- Existing studies focused on developing novel approaches, disregarding heuristics
- → To remove security threats in convoluted IoT ecosystem, heuristics are inevitable!

		Summary of Results
	Emulate firmware	183 images → 892 images (16.28% → 79.36%)
U	Discover vulnerability	known vulns.: 320, new vulns: 95
	Identify function boundary	595 funcs → 73,874 funcs (18 images, on avg.)
2	Detect target function	18 decoders, 0 false positives
	Discover software bug	functional bugs: 78, known vulns: 6, new vulns: 50
5	Systematic study of BCSA	Systematized features and benchmarks of 43 studies. Built a benchmark dataset of 243K bins for 36M funcs.
3	Discover known vulnerability	Built a vulnerability dataset of 323 vulns in 1,142 images. 442 vulns in custom bins, 343 vulns in OpenSSL libs.

→ Developing/Systematizing heuristics helped test 1,256 vulnerabilities

Thesis Conclusion

- Existing studies focused on developing novel approaches, disregarding heuristics
- ➔ To remove security threats in convoluted IoT ecosystem, heuristics are inevitable!

		Summary of Results
	Emulate firmware	183 images → 892 images (16.28% → 79.36%)
U	Discover vulnerability	known vulns.: 320, new vulns: 95
	Identify function boundary	595 funcs → 73,874 funcs (18 images, on avg.)

Although heuristics seem to be trivial and not novel, developing/systematizing "dirty" heuristics is necessary to enable large-scale vulnerability analysis of IoT devices

es

3

De

Dis

Sys

Dis

Publications (Related to This Thesis)

- ✤ IoT dynamic analysis
 - <u>Dongkwan Kim</u>, Eunsoo Kim, Mingeun Kim, Yeongjin Jang, and Yongdae Kim, "Enabling Large-scale Emulation of IoT Firmware with Heuristic Workarounds", *IEEE S&P*
 - Mingeun Kim, <u>Dongkwan Kim</u>, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim, "FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis", ACSAC 2020
- ✤ IoT static analysis
 - Eunsoo Kim*, <u>Dongkwan Kim*</u>, CheolJun Park, Insu Yun, and Yongdae Kim, "BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications for L3 Protocols", NDSS 2021
- Binary code similarity analysis
 - <u>Dongkwan Kim</u>, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim, "Revisiting Binary Code Similarity Analysis using Interpretable Feature Engineering and Lessons Learned", *IEEE Transactions on Software Engineering (major revision, under review)*

Publications (Other IoT devices)

- Wearable IoT devices
 - <u>Dongkwan Kim</u>, Suwan Park, Kibum Choi, Yongdae Kim, "BurnFit: Analyzing and Exploiting Wearable Devices", WISA 2015
- Sensors in IoT devices
 - Yunmok Son, Hocheol Shin, <u>Dongkwan Kim</u>, Youngseok Park, Juhwan Noh, Kibum Choi, Jungwoo Choi, and Yongdae Kim, "Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors", USENIX Security 2015
- ✤ USIM in smartphone
 - Shinjo Park, Suwan Park, Insu Yun, <u>Dongkwan Kim</u>, Yongdae Kim, "Analyzing Security of Korean USIM-based PKI Certificate Service", WISA 2014
- Blockchain
 - Sangsup Lee, Daejun Kim, <u>Dongkwan Kim</u>, Sooel Son, and Yongdae Kim, "Who Spent My EOS? On the (In)Security of Resource Management of EOS.IO", *WOOT 2019*

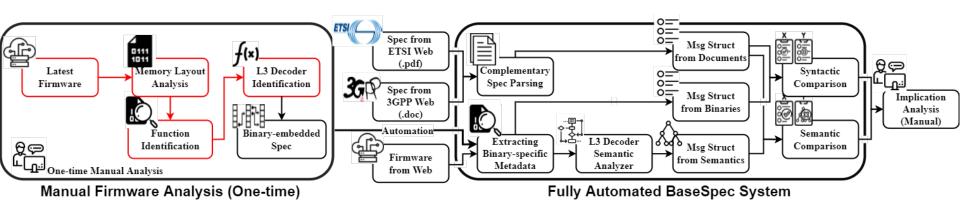
Publications (Cellular Infrastructure)

- Control plane
 - Byeongdo Hong, Shinjo Park, Hongil Kim, <u>Dongkwan Kim</u>, Hyunwook Hong, Hyunwoo Choi, Jean-Pierre Seifert, Sung-Ju Lee, and Yongdae Kim, "Peeking over the Cellular Walled Gardens - A Method for Closed Network Diagnosis", *IEEE Transactions on Mobile Computing (TMC 2018)*
- ✤ Data plane
 - Sangwook Bae, Mincheol Son, Dongkwan Kim, CheolJun Park, Jiho Lee, Sooel Son, Yongdae Kim, "Watching the Watchers: Practical Video Identification Attack in LTE Networks", USENIX Security 2021
 - Hyunwook Hong, Hyunwoo Choi, <u>Dongkwan Kim</u>, Hongil Kim, Byeongdo Hong, Jiseong Noh, and Yongdae Kim, "When Cellular Networks Met IPv6: Security Problems of Middleboxes in IPv6 Cellular Networks", *EuroS&P* 2017
 - Hyunwook Hong, Hongil Kim, Byeongdo Hong, <u>Dongkwan Kim</u>, Hyunwoo Choi, Eunkyu Lee and Yongdae Kim, "7. Pay As You Want: Bypassing Charging System in Operational Cellular Networks", *WISA 2016*
- ✤ Hybrid plane
 - Hongil Kim*, Dongkwan Kim*, Minhee Kwon, Hyungseok Han, Yeongjin Jang, Dongsu Han, Taesoo Kim, and Yongdae Kim, "Breaking and Fixing VoLTE: Exploiting Hidden Data Channels and Mis-implementations", CCS 2015

*: co-first author

Participated Projects (Selected)

- Industrial Projects
 - Researcher, *Samsung*, "An Industry-academia Task with Samsung Electronics Device Solutions Business", 2020
 - Leader, *Samsung*, "Organizing Samsung Capture-the-flag (SCTF)", 2017-2018
 - Researcher, SK Telecom, "A Study on the Security Vulnerability Analysis and Response Method of LTE Networks", 2016-2017
 - Researcher, *Hyundai NGV*, "A Security Vulnerability Analysis of Smartcar Core Modules", 2016-2017
 - Researcher, SK Telecom, "A Study on the Security Analysis and Response Method of LTE Networks", 2015-2016
 - Researcher, *Samsung*, "A Security Analysis of Samsung SmartTV", 2014-2015
- Governmental Projects (including US)
 - Leader, *AOARD*, "Cyber Physical Analysis of System Software Survivability by Stimulating Sensors on Drones", 2020-2021
 - Leader, *NSR*, "A study on the Android-based Security Analysis Technology", 2020
 - Researcher, *IITP*, "A study on the Security of Random Number Generator and Embedded Devices", 2017-2019
 - Leader, NSR, "A study on the Firmware Emulation Technology for Linux-based Routers", 2017
 - Researcher, *IITP*, "A development of Automated Reverse Engineering and Vulnerability Detection Base Technology through Binary Code Analysis", 2016-2018
 - Leader, KAIST, "A CAPTCHA Design based on Human Perception Characteristics", 2016
 - Leader, *NSR*, "A Study on the Vulnerability Analysis Method of Domestic/International Smartcars", 2015
 - Researcher, KISA, "A Study on the Analysis of Technology and Security Threats in LTE Femtocell", 2013-2014


Thank You!

dkay@kaist.ac.kr

BACKUP SLIDES

BaseSpec Separation

- Dongkwan
 - Developing heuristics for firmware structure analysis
- Eunsoo
 - Extract embedded specification from the baseband binary
 - Compare the message structures implemented in the baseband and specification

Type Features Should Be Studied

- Function type does not change unless source code varies
 - # of arguments
 - Leverage Jaccard index for checking argument type, return type
- ✤ All benchmark tests achieved ROC AUC over 0.99
- vs VulSeeker

ROC AUC

 $J(A,B) = \frac{|A \cap B|}{|A \cup B|}$

Dataset	Packages	Arch	Compilers	VulSeeker	Ours	Ours (Type)	
ASE1	2	3	1	0.99	0.9727	0.9924	Largor
ASE2	5	3	1	-	0.9764	0.9931	Larger Dataset
ASE3	5	6	2	0.8849	0.9782	0.9939	Dataset
ASE4	5	8	9	-	0.9584	0.9841	

→ Features from type information is effective (NDSS'11, SIGPLAN'13, SEC'17, CCS'18, ...)

Failure Case Analysis

Errors in IDA Pro (72% use IDA Pro)

- Cannot handle some registers in GCC and Clang
 - GCC: 'gp', Clang: 's0', 'v0'
- incomplete CFGs
 - switch table, data in code section

Diversity of compiler backends

- Conditional instructions for ARM
 - GCC: MOVLE, MOVGT, Clang: MOV + JLE, MOV + JGT
- Instruction pointer loading
 - GCC: call __x86.get_pc_thunk.bx, Clang: call \$+5

Architecture-specific macros

- mul_add in OpenSSL

→ Need to consider these cases carefully!

Case Study of CVE-2017-6077

- Command injection in parsing "ping_IPAddr" (for debug)
- ✤ 3 firmware images have the functionality
 - If functionality exists, vulnerable

Range	# of Samples	Is Vulnerable?	Vendor
0.85 ~ 1.00	2 (2 Ground Truths)	Vulnerable	Netgear
0.5 ~ 0.85	1	Vulnerable	Netgear
	Ge	ets additional paran	neter for VPN

Case Study of CVE-2012-2765

Password disclosure in login page (client-side password checking)

Range	# of Samples	Is Vulnerable?	Vender	
0.72 ~ 1.00	7 (3 Ground Truths)	Vulnerable	Belkin	
0.66	1	Patched	Belkin	
0.58	2 (0 Ground Truths)	Vulnerable	Belkin 💼	(Latest) No debug routine
0.53	1	Not Vulnerable	Linksys	No debug routine

- Vulnerability in a webpage, but detected at the binary level
- ✤ Three images are released at Feb. 2018
 - One patched, the other two were still vulnerable
- → BCSA can detect diversities in compile environments

Case Study of CVE-2017-5521

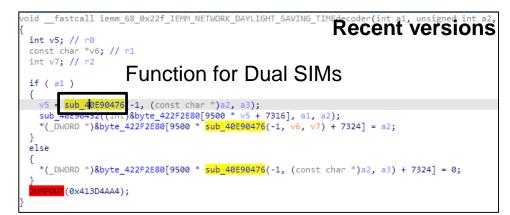
- Two staged vulnerability
 - Stage1: leak the device id
 - Stage2: leak the user id/password using the device id

Range	# of Samples	Is Vulnerable?	Vender	Arch			
0.98 ~ 1.00	40 (26 Ground Truths)	Vulnerable	Netgear	ARM			
0.74 ~ 0.83	73	Patched	Netgear	ARM			
0.79	2 (0 Ground Truths)	Incorrectly Patched	Netgear	ARM			
0.51 ~ 0.52	11 (9 Ground Truths)	Vulnerable	Netgear	Stripped			
0.52 ~ 0.59	151	Unknown	Netgear, TRENDnet, D-Link,	ARM, MIPS, MIPSEB			
	Old firmware images, different binaries						

Case Study of CVE-2017-5521

- Two staged vulnerability
 - Stage1: leak the device id
 - Stage2: leak the user id/password using the device id

Range	# of Samples	Is Vulnerable?	Vender	Arch
0.98 ~ 1.00	79 (26 Ground Truths)	Vulnerable	Netgear	ARM
0.76 ~ 0.92	36	Patched	Netgear	ARM
0.74 ~ 0.78	24 (6 Ground Truths)	Vulnerable	Netgear	MIPS
0.68 ~ 0.73	9	Patched	Netgear	MIPS
0.51 ~ 0.53	3	No Functionality	Netgear	MIPSEB
0.51 ~ 0.51	1	Patched	Netgear	MIPS
0.51 ~ 0.51	14 (3 Ground Truths)	Vulnerable	Netgear	MIPS
	Different implementation			



Failure Case Study – Baseband B7

- Too small function
 - CFG size: 3
- ✤ Code for a new routine
 - To support Dual SIMs
 - → Takes a large portion

Size of the target function is critical

fastcall iemm 68 0x227 IEMM NETWORK DAYLIGHT SAVING TI Old versions int result; // r0 if (a1) result = sub 40D54270(&unk 423CDFE0, a1, a2); dword 423CDFE8 = a_2 ; else result = 0; dword 423CDFE8 = 0; return result;

