Who Spent My EOS?

On the (In)Security of Resource Management of EOS.IO

Sangsup Lee, Daejun Kim, Dongkwan Kim, Sooel Son, Yongdae Kim @KAIST

2K+ Cryptocurrencies

Resource management of EOS.IO

4 unique vulnerabilities

Resource management of EOS.IO

Evaluated the impact of each vulnerability

4 unique vulnerabilities

Resource management of EOS.IO

Background

Overview of cryptocurrency components

Key components

Background: PoW (Proof of Work)

Consensus algorithm (PoW)

Slow...

EOS.IO Consensus algorithm (DPoS)

FAST! (0.5 sec / block)

EOS.IO Consensus algorithm (DPoS)

FAST! (0.5 sec / block)

But, resource management matters.

Background: Smart contract

Smart contract

Background: Smart contract on EOS.IO

- Target (Ex. eBay)
- Function (Ex. Bidding(), Selling())
- Permission (Ex. Alice@active)

Background: Smart contract on EOS.IO

Delegated execution

Delegated Execution

Resource management matters

Transaction delivery

NET

Program execution

Refreshed every day

Not refreshed every day.

n

0

0

Ō

Why EOS?

Why EOS?

Why EOS?

Rank of marketcap	Name		Consensus algorithm	Smart contract platform
1	Bitcoin	₿	PoW	X
2	Ethereum	۶	PoW	Ο
3	Ripple	Х	PoS	X
4	Litecoin	l	PoW	X
5	Bitcoin cash	(3)	PoW	X
6	Binance Coin		X	X
7	EOS	\Diamond	DPoS	0

User accounts \approx 1.3 M

But, no security research in academia.

0

n

0

0

In our paper...

0

Ω

0

Ω

0

Ω

Ω

0

Ω

Ο

0

 \cap

Attack Target

Attack Target

Attack Target

What are new attack targets?

Attack Target

What are new attack targets?

0 0

Ω

Ō

Ο

0 1 0

0

Ο

Ō

 \cap

0

Block delay attack | DoS by draining EOS resources | RAMsomware attack

Estimated financial loss via block delay attack

		Atta	Victim				
Block Count	Time (min)	Eos-CPU (min)	EOS-NET (MiB)	Cost (EOS)	Delay Time (min)		
376	0.92	1.23	16.13	480		181,518 EOS = \$880,000 USD (29/7/2019)	
704	2.06	2.32	34.72	910	3.56		
1106	3.02	3.65	50.82	1,426	5.67	12,851	
1471	4.00	4.85	65.53	1,894	7.46	148,478	
1840	5.04(min)	6.07	79.69	2,368	9.12(min)	181,518	

Average of EOS transfer volume (01/04/2019~30/04/2019)

Block delay attack | DoS by draining EOS resources | RAMsomware attack

Estimated financial loss via block delay attack

		Att	ker		Victim	
Block Count	Time (min)	Eos-CPU (m		ost OS)	Delay Time (min)	Loss (EOS)
	0.92				2.05	40,802
704	2.06		naximum bug l \$10,000 USD) EOSIO founda [.]		3.56	70,856
	3.02	FIOIII	EUSIO IUuliua	6	5.67	112,851
1471	4.00	4.8		94	7.46	148,478
	5.04(min)	6.07	79.69	2,36	9.12(min)	181,518

표의 맨 아래쪽을 보면 5분동안 dummy transaction을 잔류 시키면, 약 9분간 block이 생성이 멈추는 결과를 얻을 수 있었다.

block 생성이 멈추면 EOS 의 모든 transaction 처리가 되지 않으며, 그 잠재적 손실은 191,518 EOS 이다.

DoS by draining EOS resources: RAM-drain attack

Block delay attack | DoS by draining EOS resources | RAMsomware attack

EOS-RAM is purchase resource not stake,

so EOS-RAM doesn't return until finishing their propose

DoS by draining EOS resources: RAM-drain attack

Block delay attack | DoS by draining EOS resources | RAMsomware attack

EOS-RAM is purchase resource not stake,

so EOS-RAM doesn't return until finishing their propose

DoS by draining EOS resources: RAM-drain attack

Block delay attack | DoS by draining EOS resources | RAMsomware attack

 $\times SC_A$ O SC_B

The Consuming time for RAM is depends on Smart contract's source code

DoS by draining EOS resources: CPU-drain attack

DoS by draining EOS resources: CPU-drain attack

Over x3 (times)

Block delay attack | DoS by draining EOS resources | RAMsomware attack

61

The user who have the largest EOS-RAM have 2GB EOS RAM

Defense

Defense

Trivial solution

- Block delay attack
- CPU/RAM drain attack
- RAMsomware attack

- Patched by EOSIO developers
- Do access control
- Do check smart contract version

Defense

Trivial solution

- Block delay attack
- CPU/RAM drain attack
- RAMsomware attack

- Do access control
- Do check smart contract version

Design solution

- Fine graind permission
 - : eosio.code Expire Time, Maximum EOS Coin per a transaction
 - : EOS-CPU permission, EOS-NET permission, EOS-RAM permission etc...
- Totally payment of transaction fee to the first transaction creator
 - : Every transaction that purpose a role, is payed by the users who start trx.

Conclusion & Future work

- Conclusion

- Analyzed new threats from the view point of new resources in EOS.IO
- Found 4 new attack methodologies and verified them
- Proposed new security features to prevent our attacks

- Future work

- Make an automatic auditing tool for our attacks
- Design a web assembly analyzer

