USENIX Security Symposium 2015

Rocking Drones with Intentional Sound Noise on Gyroscopic Sensors

2015. 08. 14.

Yunmok Son, Hocheol Shin, Dongkwan Kim, Youngseok Park, Juhwan Noh, Kibum Choi, Jungwoo Choi, and Yongdae Kim Electrical Engineering at KAIST System Security Lab.

Drones (Multi-coptors)

- Distribution delivery
- ✤ Search and rescue
- ✤ Aerial photography
- Private hobby

✤ Air terrorism using a weaponized drone

✤ Air terrorism using a weaponized drone

Teenager's video of gun-firing drone prompts investigations by aviation officials, police Jul. 2015

✤ Air terrorism using a weaponized drone

Teenager's video of gun-firing droneprompts investigations by aviationofficials, policeJul. 2015

Man detained outside White House for trying to fly drone May. 2015

✤ Air terrorism using a weaponized drone

Teenager's video of gun-firing droneprompts investigations by aviationofficials, policeJul. 2015

Man detained outside White House for trying to fly drone May. 2015

Arrest after drone with radioactive Apr. 2015 material lands on Japan PM's rooftop

✤ Air terrorism using a weaponized drone

Teenager's video of gun-firing droneprompts investigations by aviationofficials, policeJul. 2015

Man detained outside White House for trying to fly drone May. 2015

Arrest after drone with radioactive Apr. 2015 material lands on Japan PM's rooftop

The Switch

Watch the Pirate Party fly a drone in front of
Germany's chancellorSep. 2013

Attack Vectors of Drone

Attack Vectors of Drone

Attack Vectors of Drone

Attack Vectors of Drone RF jamming or spoofing High Power Software Comm. hacking channel **Bumper Drone** Drone Physical **Drone Capturin** attack Shot-gun DEFENDER OF PRIVACY

System Security La

System Sec

Attack Vectors of Drone RF jamming or spoofing **High Power Las** Software Comm. hacking channel **Bumper Drone** How secure is drone against Drone interference on sensing channel? Litual u Lou Shot-gun Sensing channel **GPS** Jamming DEFENDER OF PRIVACY or Spoofing

* IMU: Inertial Measurement Unit

Gyroscope on Drone

* MEMS: Micro-Electro-Mechanical Systems

- ✤ Inertial Measurement Unit (IMU)
 - A device to measure velocity, orientation, or rotation
 - Using a combination of MEMS gyroscopes and accelerometers

Gyroscope on Drone

* MEMS: Micro-Electro-Mechanical Systems

- ✤ Inertial Measurement Unit (IMU)
 - A device to measure velocity, orientation, or rotation
 - Using a combination of MEMS gyroscopes and accelerometers

✤ MEMS gyroscope

7

Gyroscope on Drone

- Inertial Measurement Unit (IMU)
 - A device to measure velocity, orientation, or rotation
 - Using a combination of MEMS gyroscopes and accelerometers

✤ MEMS gyroscope

Contraction of the second seco

<Conceptual structure of MEMS gyro.>

* MEMS: Micro-Electro-Mechanical Systems

Gyroscope on Drone

7

* MEMS: Micro-Electro-Mechanical Systems

Resonance in MEMS Gyroscope

- Mechanical resonance by sound noise
 - Known fact in the MEMS community
 - Degrades MEMS Gyro's accuracy
 - With (resonant) frequencies of sound

Resonance in MEMS Gyroscope

- Mechanical resonance by sound noise
 - Known fact in the MEMS community
 - Degrades MEMS Gyro's accuracy
 - With (resonant) frequencies of sound

L3GD20

Features

- Three selectable full scales (±250/500/2000 dps)
- 20+ kHz resonant frequency over the audio bandwidth

MEMS Gyro. with a high resonant frequency to reduce the sound noise effect (above 20kHz)

Experiment Setup

Experimental Results (1/3)

- Found the resonant frequencies of 7 MEMS gyroscopes
- ✤ Not found for 8 MEMS gyroscopes

Sensor	Vender	Supporting Axis	Resonant freq. in the datasheet (axis)	Resonant freq. in our experiment (axis)
L3G4200D	STMicro.	X, Y, Z	No detailed information	7,900 ~ 8,300 Hz (X, Y, Z)
L3GD20	STMicro.	X, Y, Z		19,700 ~ 20,400Hz (X, Y, Z)
LSM330	STMicro.	X, Y, Z		19,900 ~ 20,000 Hz (X, Y, Z)
MPU6000	InvenSense	X, Y, Z	30 ~ 36 kHz (X) 27 ~ 33 kHz (Y) 24 ~ 30 kHz (Z)	26,200 ~ 27,400 Hz (Z)
MPU6050	InvenSense	X, Y, Z		25,800 ~ 27,700 Hz (Z)
MPU9150	InvenSense	X, Y, Z		27,400 ~ 28,600 Hz (Z)
MPU6500	InvenSense	X, Y, Z	25 ~ 29 kHz (X, Y, Z)	26,500 ~ 27,900 Hz (X, Y, Z)

Experimental Results (1/3)

- Found the resonant frequencies of 7 MEMS gyroscopes
- ✤ Not found for 8 MEMS gyroscopes

Sensor	Vender	Supporting Axis	Resonant freq. in the datasheet (axis)	Resonant freq. in our experiment (axis)
L3G4200D	STMicro.	X, Y, Z	No detailed information	7,900 ~ 8,300 Hz (X, Y, Z)
L3GD20	STMicro.	X, Y, Z		19,700 ~ 20,400Hz (X, Y, Z)
LSM330	STMicro.	X, Y, Z		19,900 ~ 20,000 Hz (X, Y, Z)
MPU6000	InvenSense	X, Y, Z	30 ~ 36 kHz (X) 27 ~ 33 kHz (Y) 24 ~ 30 kHz (Z)	26,200 ~ 27,400 Hz (Z)
MPU6050	InvenSense	X, Y, Z		25,800 ~ 27,700 Hz (Z)
MPU9150	InvenSense	X, Y, Z		27,400 ~ 28,600 Hz (Z)
MPU6500	InvenSense	X, Y, Z	25 ~ 29 kHz (X, Y, Z)	26,500 ~ 27,900 Hz (X, Y, Z)

Experimental Results (1/3)

- Found the resonant frequencies of 7 MEMS gyroscopes
- ✤ Not found for 8 MEMS gyroscopes

Sensor	Vender	Supporting Axis	Resonant freq. in the datasheet (axis)	Resonant freq. in our experiment (axis)
L3G4200D	STMicro.	X, Y, Z	No detailed information	7,900 ~ 8,300 Hz (X, Y, Z)
L3GD20	STMicro.	X, Y, Z		19,700 ~ 20,400Hz (X, Y, Z)
LSM330	STMicro.	X, Y, Z		19,900 ~ 20,000 Hz (X, Y, Z)
MPU6000	InvenSense	X, Y, Z	30 ~ 36 kHz (X) 27 ~ 33 kHz (Y) 24 ~ 30 kHz (Z)	26,200 ~ 27,400 Hz (Z)
MPU6050	InvenSense	X, Y, Z		25,800 ~ 27,700 Hz (Z)
MPU9150	InvenSense	X, Y, Z		27,400 ~ 28,600 Hz (Z)
MPU6500	InvenSense	X, Y, Z	25 ~ 29 kHz (X, Y, Z)	26,500 ~ 27,900 Hz (X, Y, Z)

Experimental Results (2/3)

Experimental Results (2/3)

Experimental Results (2/3)

Experimental Results (3/3)

Experimental Results (3/3)

Experimental Results (3/3)

Unexpected output by sound noise (for L3G4200D)

- Two open-source firmware programs
 - Multiwii project
 - ArduPilot project

- Two open-source firmware programs
 - Multiwii project
 - ArduPilot project
- Rotor control algorithm

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- ✤ Rotor control algorithm

for axis do $P = txCtrl[axis] - gyro[axis] \times G_P[axis];$ $error = txCtrl[axis]/G_P[axis] - gyro[axis];$ $error_{accumulated} = error_{accumulated} + error;$ $I = error_{accumulated} \times G_I[axis];$ $delta = gyro[axis] - gyro_{last}[axis];$ $delta_{sum} = \text{sum of the last three delta values;}$ $D = delta_{sum} \times G_D[axis];$ PIDCtrl[axis] = P + I - D;

end

for rotor **do for** axis **do** | rotorCtrl[rotor] =

txCtrl[throttle] + PIDCtrl[axis];

end

limit *rotorCtrl*[*rotor*] within the pre-defined MIN (1,150) and MAX (1,850) values;

end

actuate rotors;

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- ✤ Rotor control algorithm

for axis do $P = txCtrl[axis] - gyro[axis] \times G_P[axis];$ $error = txCtrl[axis]/G_P[axis] - gyro[axis];$ $error_{accumulated} = error_{accumulated} + error;$ $I = error_{accumulated} \times G_I |axis|;$ $delta = gyro[axis] - gyro_{last}[axis];$ $delta_{sum} = sum of the last three delta values;$ $D = delta_{sum} \times G_D[axis];$ PIDCtrl[axis] = P + I - D;end for *rotor* do for axis do rotorCtrl[rotor] =txCtrl[throttle] + PIDCtrl[axis];end limit *rotorCtrl*[*rotor*] within the pre-defined MIN (1,150) and MAX (1,850) values; end actuate rotors:

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- ✤ Rotor control algorithm

for axis do $P = txCtrl[axis] - gyro[axis] \times G_P[axis];$ $error = txCtrl[axis]/G_P[axis] - gyro[axis];$ $error_{accumulated} = error_{accumulated} + error;$ $I = error_{accumulated} \times G_I |axis|;$ $delta = gyro[axis] - gyro_{last}[axis];$ $delta_{sum} = sum of the last three delta values;$ $D = delta_{sum} \times G_D[axis];$ PIDCtrl[axis] = P + I - D;end for *rotor* do for axis do rotorCtrl[rotor] =txCtrl[throttle] + PIDCtrl[axis];end limit *rotorCtrl*[*rotor*] within the pre-defined MIN (1,150) and MAX (1,850) values; end actuate rotors:

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- Rotor control algorithm

for axis do $P = txCtrl[axis] - gyro[axis] \times G_P[axis];$ $error = txCtrl[axis]/G_P[axis] - gyro[axis];$ $error_{accumulated} = error_{accumulated} + error;$ $I = error_{accumulated} \times G_I |axis|;$ $delta = gyro[axis] - gyro_{last}[axis];$ $delta_{sum} = sum of the last three delta values;$ $D = delta_{sum} \times G_D[axis];$ PIDCtrl[axis] = P + I - D;end for rotor do for axis do rotorCtrl[rotor] =txCtrl[throttle] + PIDCtrl[axis];end limit *rotorCtrl*[*rotor*] within the pre-defined MIN (1,150) and MAX (1,850) values; end actuate rotors:

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- ✤ Rotor control algorithm

for axis do $P = txCtrl[axis] - gyro[axis] \times G_P[axis];$ $error = txCtrl[axis]/G_P[axis] - gyro[axis];$ $error_{accumulated} = error_{accumulated} + error;$ $I = error_{accumulated} \times G_{I}[axis];$ $delta = gyro[axis] - gyro_{last}[axis];$ $delta_{sum} = \text{sum of the last three delta values;}$ $D = delta_{sum} \times G_D[axis];$ PIDCtrl[axis] = P + I - D;end for rotor do for axis do rotorCtrl[rotor] =txCtrl[throttle] + PIDCtrl[axis];end limit *rotorCtrl*[*rotor*] within the pre-defined MIN (1,150) and MAX (1,850) values; end actuate rotors:

- Two open-source firmware program
 - Multiwii project
 - ArduPilot project Proportional-Integra
 Derivative control
- ✤ Rotor control algorithm

Target Drones

- ✤ Target drone A (DIY drone)
 - Gyroscope: L3G4200D
 - Resonant freq.: 8,200 Hz
 - Firmware: Multiwii

- ✤ Target drone B (DIY drone)
 - Gyroscope: MPU6000
 - Resonant freq.: 26,200 Hz
 - Firmware: ArduPilot

Attack DEMO

Attack DEMO (Target drone A)

Raw data samples of the gyroscope

Attack DEMO (Target drone A)

Attack DEMO (Target drone A)

SysSec System Security Lab

21

Attack Results

Result of attacking two target drones

	Target Drone A	Target Drone B
Resonant Freq. (Gyro.)	8,200 Hz (L3G4200D)	26,200 Hz (MPU6000)
Affected Axes	X, Y, Z	Z
Attack Result	Fall down	-

Attack Results

Result of attacking two target drones

	Target Drone A	Target Drone B
Resonant Freq. (Gyro.)	8,200 Hz (L3G4200D)	26,200 Hz (MPU6000)
Affected Axes	X, Y, Z	Z
Attack Result	Fall down	-

- X- and Y-axis = vertical rotation (more critical effect on stability)
- Z-axis = horizontal orientation

Attack Distance

- The minimum sound pressure level in our experiments
 - About 108.5 dB SPL (at 10cm)

$$SPL = SPL_{ref} - 20\log\left(\frac{d}{d_{ref}}\right)$$

Attack Distance

- The minimum sound pressure level in our experiments
 - About 108.5 dB SPL (at 10cm)

$$SPL = SPL_{ref} - 20\log\left(\frac{d}{d_{ref}}\right)$$

Theoretically, 37.58m using a sound source that can generate 140 dB SPL at 1m

Attack Distance

- The minimum sound pressure level in our experiments
 - About 108.5 dB SPL (at 10cm)

$$SPL = SPL_{ref} - 20\log\left(\frac{d}{d_{ref}}\right)$$

Theoretically, 37.58m using a sound source that can generate 140 dB SPL at 1m

	<450X	L of LRAD Corporation>
	Maximum Continuous	146dB SPL @ 1 meter, A-weighted
	Output Sound Projection Communications Range	+/- 15° at 1 kHz/-3dB Highly intelligible voice messages over

24 (http://www.lradx.com/wp-content/uploads/2015/05/LRAD_Datasheet_450XL.pdf)

Attack Scenarios

- Drone to Drone Attack
- Sonic Weapons
- ✤ Sonic Wall/Zone

Limitations (1/2)

✤ Aiming at a 3- dimensional moving object

Limitations (1/2)

✤ Aiming at a 3- dimensional moving object

Limitations (2/2)

✤ No accumulated effect or damage

Countermeasure

Countermeasure

- Physical isolation
 - Shielding from sound
 - Using four materials
 - Paper box
 - Acrylic panel
 - Aluminum plate
 - Foam

Countermeasure

- Physical isolation
 - Shielding from sound
 - Using four materials
 - Paper box
 - Acrylic panel
 - Aluminum plate
 - Foam

14 (X-axis) 12 10 23.32% 23.0% b 25 20 σ (Y-axis) 15 10 24.63% 16.13% 12.4% 5 axis) 65.23% 59.02% 59.28% 58.43% Ņ р 0 w/o defense Paper box Acrylic panel Aluminum plate Foam (40 by 20 cm) (40 by 30 cm, (30 by 20 cm, (50 by 25 cm) 3T) 1.5T)

Standard deviation of raw data samples for one L3G4200D chip (averaged for 10 identical tests)

Conclusion

- ✤ A case study for a threat caused by sensor input
 - Finding mechanical resonant frequencies from 7 kinds of MEMS gyro.
 - Analyzing the effect of this resonance on the firmware of drones
 - Demonstrating to attack drones using sound noise in the real world
 - Suggesting several attack scenarios and defenses

Conclusion

- ✤ A case study for a threat caused by sensor input
 - Finding mechanical resonant frequencies from 7 kinds of MEMS gyro.
 - Analyzing the effect of this resonance on the firmware of drones
 - Demonstrating to attack drones using sound noise in the real world
 - Suggesting several attack scenarios and defenses
- Future work
 - Developing a software based defense (without hardware modifications)
 - Against sensing channel attacks for drones or embedded devices

Conclusion

- ✤ A case study for a threat caused by sensor input
 - Finding mechanical resonant frequencies from 7 kinds of MEMS gyro.
 - Analyzing the effect of this resonance on the firmware of drones

Sensor output should not be fully trusted. (Not only by natural errors, but also by attackers)

Future work

- Developing a software based defense (without hardware modifications)
- Against sensing channel attacks for drones or embedded devices

C

Thank You!

yunmok00@kaist.ac.kr

APPENDIXES

Sensor

- ✤ Definition
 - To detect physical properties in nature
 - To convert them to quantitative values

Sensor

- ✤ Definition
 - To detect physical properties in nature
 - To convert them to quantitative values

New channel to attack (for attacker)

Sensor

- ✤ Definition
 - To detect physical properties in nature
 - To convert them to quantitative values

Three interfaces

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities
 - Insensitive to other (physical) quantities

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities
 - Insensitive to other (physical) quantities
 - Need to send data to the system

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities
 - Insensitive to other (physical) quantities
 - Need to send data to the system

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities
 - Insensitive to other (physical) quantities
 - Need to send data to the system

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities
 - Insensitive to other (physical) quantities
 - Need to send data to the system

(CHES 2013)

- ✤ Three interfaces
 - Sensitive to legitimate (physical) quantities Spoofing attack
 - Insensitive to other (physical) quantities
 - Need to send data to the system

(CHES 2013)

Sensing data

Sound Noise Source

Sound Pressure Level (SPL) and Total Harmonics Distortion plus Noise (THD+N) measurement

Sound Measurement Instrument (NI USB-4431)

