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Drones (Multi-coptors)
 Distribution delivery

 Search and rescue

 Aerial photography

 Private hobby
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Drone, A New Threat
 Air terrorism using a weaponized drone
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Drone System
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Gyroscope on Drone
 Inertial Measurement Unit (IMU)

– A device to measure velocity,
orientation, or rotation

– Using a combination of MEMS
gyroscopes and accelerometers
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Gyroscope on Drone
 Inertial Measurement Unit (IMU)

– A device to measure velocity,
orientation, or rotation

– Using a combination of MEMS
gyroscopes and accelerometers

 MEMS gyroscope

7

* MEMS: Micro-Electro-Mechanical Systems

<Conceptual structure of MEMS gyro.>

(https://www.youtube.com/watch?v=joS6kfjuKQo, https://www.youtube.com/watch?t=45&v=sH7XSX10QkM)



Resonance in MEMS Gyroscope
 Mechanical resonance by sound noise

– Known fact in the MEMS community

– Degrades MEMS Gyro’s accuracy

– With (resonant) frequencies of sound
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MEMS Gyro. with a high resonant frequency 
to reduce the sound noise effect (above 20kHz)



Experiment Setup
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Experimental Results (1/3)

 Found the resonant frequencies of 7 MEMS gyroscopes

 Not found for 8 MEMS gyroscopes

13

Sensor Vender
Supporting 

Axis
Resonant freq.

in the datasheet (axis)
Resonant freq.

in our experiment (axis)

L3G4200D STMicro. X, Y, Z

No detailed information

7,900 ~ 8,300 Hz (X, Y, Z)

L3GD20 STMicro. X, Y, Z 19,700 ~ 20,400Hz (X, Y, Z)

LSM330 STMicro. X, Y, Z 19,900 ~ 20,000 Hz (X, Y, Z)

MPU6000 InvenSense X, Y, Z
30 ~ 36 kHz (X)
27 ~ 33 kHz (Y)
24 ~ 30 kHz (Z)

26,200 ~ 27,400 Hz (Z)

MPU6050 InvenSense X, Y, Z 25,800 ~ 27,700 Hz (Z)

MPU9150 InvenSense X, Y, Z 27,400 ~ 28,600 Hz (Z)

MPU6500 InvenSense X, Y, Z 25 ~ 29 kHz (X, Y, Z) 26,500 ~ 27,900 Hz (X, Y, Z)
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Experimental Results (2/3)

 Unexpected output by sound noise (for L3G4200D)
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Experimental Results (3/3)

 Unexpected output by sound noise (for L3G4200D)
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7,900 ~
8,300Hz

Standard deviation of raw data samples
for 12 L3G4200D chips (Z-axis)

Raw data samples of one L3G4200D chip
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What is the impact of abnormal sensor output 
to the actuation of drone system?
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– ArduPilot project
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Target Drones
 Target drone A (DIY drone)

– Gyroscope: L3G4200D

– Resonant freq.: 8,200 Hz

– Firmware: Multiwii

 Target drone B (DIY drone)

– Gyroscope: MPU6000

– Resonant freq.: 26,200 Hz

– Firmware: ArduPilot
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(Audible sound range) (Ultra sound range)



Attack DEMO
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Attack DEMO (Target drone A)
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Raw data samples of the gyroscope



Attack DEMO (Target drone A)

21

Raw data samples of the gyroscope Rotor control data samples

Flight 
Controller

Input Output



Attack DEMO (Target drone A)
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Attack Results
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 Result of attacking two target drones

Target Drone A Target Drone B

Resonant Freq. (Gyro.) 8,200 Hz (L3G4200D) 26,200 Hz (MPU6000)

Affected Axes X, Y, Z Z

Attack Result Fall down -
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 Result of attacking two target drones

Target Drone A Target Drone B

Resonant Freq. (Gyro.) 8,200 Hz (L3G4200D) 26,200 Hz (MPU6000)

Affected Axes X, Y, Z Z

Attack Result Fall down -

 X- and Y-axis = vertical rotation 
(more critical effect on stability)

 Z-axis = horizontal orientation



Attack Distance
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Attack Distance
 The minimum sound pressure level in our experiments

– About 108.5 dB SPL (at 10cm)

 Theoretically, 37.58m using a sound source that can generate 
140 dB SPL at 1m

24 (http://www.lradx.com/wp-content/uploads/2015/05/LRAD_Datasheet_450XL.pdf)

<450XL of LRAD Corporation>



Attack Scenarios
 Drone to Drone Attack

 Sonic Weapons

 Sonic Wall/Zone
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Limitations (1/2)

 Aiming at a 3- dimensional moving object
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Limitations (1/2)

 Aiming at a 3- dimensional moving object
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Limitations (2/2)

 No accumulated effect or damage

27

Simple sonic wall
(3m-by-2m, 25 speakers)
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Countermeasure
 Physical isolation

– Shielding from sound

– Using four materials

 Paper box

 Acrylic panel

 Aluminum plate

 Foam
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Standard deviation of raw data samples for 
one L3G4200D chip (averaged for 10 identical tests)



Conclusion
 A case study for a threat caused by sensor input

– Finding mechanical resonant frequencies from 7 kinds of MEMS gyro.

– Analyzing the effect of this resonance on the firmware of drones

– Demonstrating to attack drones using sound noise in the real world

– Suggesting several attack scenarios and defenses
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Sensor output should not be fully trusted.
(Not only by natural errors, but also by attackers)
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Sensor
 Definition

– To detect physical properties in nature

– To convert them to quantitative values
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Our work



Sound Noise Source
 Sound Pressure Level (SPL) and Total Harmonics Distortion plus 

Noise (THD+N) measurement
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Microphone
(Brüel & Kjær
4189-A-021)

Sound
Measurement
Instrument

(NI USB-4431)

below 2% THD+N

85~95 dB SPL

(The sound level of
noisy factory or

heavy truck)



36

Paper
box Acrylic

panel

Aluminum
plate Foam


