

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery Thereof

Jinseob Jeong*, Dongkwan Kim, Joonha Jang, Juhwan Noh, Changhun Song, and Yongdae Kim

KAIST Syssec

Drone System

- Sensing and actuation, safety critical system
 - Sensor values are propagated to the actuator.
 - Failure of the drone causes safety issues.
- Rocking Drone [Son'15]

KAIST

Rocking Drone [Usenix Sec'15]

Rocking drones with intentional sound noise on gyroscopic sensors

Son et al. in USENIX Security '15

Rocking Drone with SITL

Acoustic Injection Testbed

- Test modes
 - Software-In-The-Loop (SITL)
 - Hardware-In-The-Loop (HITL)
 - Real drone test

SITL and HITL Experiments

SITL/HITL Frequency Domain Analysis

Sampling Jitter as a Critical Factor

- Sampling jitter exists due to hardware imperfection.
 - Even with sampling jitters, drone fly normally in benign cases.

Effects of Sampling Jitter in Drones (SITL/HITL)

UnRocker IMU Sensor Recovery

Possible Mitigations

- Simple filtering approaches
 - − Mechanical shielding [Son'15] → Heating problem
 - − Circuit parameter changing [Son'15] → Unintended resonance
 - − Sampling randomization [Trippel'17] → Increased DoS effect
- State estimation based attack detection [Choi'18, Quinonez'20]
 Only detection without recovery
- Partial gyro sensor value recovery from accelerometer [Choi '20]
 - They can recover the gyroscope for only a few seconds.

Main idea: Denoising Autoencoder (DAE)

- DAE is has been used for noise reduction applications.
 - Medical imaging, industrial process, Radar, ...
 - 1-D CNN DAE

UnRocker for IMU Sensor Recovery

UnRocker Evaluation with Testing Dataset

Recovery Results (orange: compromised, blue: recovered, green: benign)

UnRocker Evaluation with Other Datasets

Domain Adaptation (orange: compromised, blue: recovered, green: benign)

Conclusion

- "Rocking Drone" was crashed not only because of the "resonation of the gyroscope", but also because of the "sampling jitter."
- UnRocker: a novel DAE based sensor recovery approach.
- Open-sourced: <u>https://github.com/jinseobjeong/UnRocker</u>

Please contact

Jinseob Jeong (jeongjin-sub@kaist.ac.kr)

If you have any comments

Towards Real-Time Recovery

Real-Time Recovery

Real-Time Recovery

Mechanical Gain and the Threat Model

MEMS IMUs have peak response outside the operating region.

We assume a strong attacker that targets the peak response to maximize the implication of the attack.

Modeling of the Resonating MEMS signals

- Modeling of Resonating MEMS Accelerometer

 - The false signal is directly related to the injected acoustic frequency.
- Modeling of Resonating MEMS Gyroscope
 - The impact of acoustic injection is decomposed into 2-orthogonal directions.
 - The potential output signal of compromised MEMS gyroscope signal is

$$\hat{\Omega}(t) = \Omega(t) + \Omega(t) \Big(rac{A_d}{S} cosig(2\pi(f_{ac}-f_d)t+\phiig)ig) + \Big(rac{A_s}{S} cosig(2\pi(f_{ac}-f_d)t+\phi\primeig)ig)$$

False angular rate from acoustic induced dr iving direction (negligible) False angular rate from acoustic induced s ensing direction

- Then the relative gain of driving directional to the sensing directional impact is

$$G_{rel} = rac{A_d\cdot\Omega}{A_s} = rac{4\pi\cdot m\cdot f_{ac}\cdot x_d\cdot\Omega}{k_s\cdot x_s} \ = \ 3.3 \ imes \ 10^{-5} \ pprox 0$$

- In short, $\hat{\Omega}_{gyro}(t) pprox \Omega_{gyro}(t) + A_i \cdot cos(2\pi F_i t + \phi) \Big(A_i = rac{A_s}{S}, F_i = |f_{ac} - f_d|\Big)$

Acoustic Injection Tests with our Testbed

- Acoustic injection for several frequencies and amplitudes
 - SITL tests show the robustness of control logic. (Except for in-band frequencies (0-5Hz))
 - There are gaps between the SITL and HITL tests, which means that certain practical hardware operations breach the inherent resilience.

*Drone succeeded its flight in colored region

Inherent Robustness of the Drone

- Resonance signal is high-frequency.
 - It is sampled, filtered, and then it affects the drone system.

- The robust control logic can prevent drone crashes in ideal (SITL) experiments
 - Basically, low-pass filter (LPF) removes high frequency signals.
 - The bandwidth of the drone system was 4.32, 5.37, and 0.005Hz (roll/pitch/yaw).
 - The narrow 'in-band' frequency leads to no response to the 'out-band' signals.

Implementation and Dataset Collection

- Implementation of UnRocker
 - DAE model, Dataset Generator, Model Training and Online Inference
- Dataset Collection
 - Gyroscope: Induced frequency $F_i = 206Hz$, $A_i = 0, 1, 2, 3, 4$ rad/s
 - Accelerometer: Induced frequency $F_i = 1.83$ kHz, $A_i = 0, 20, 40, 60, 80$ m/s²
 - Mission summary : 7 waypoints, 1330m distance,
 25~100m altitudes, 6 min flight time
 - Etc : 2 drones (Iris, Solo),4:1:1 (train/val/test)
 - Total dataset : 32.4M pairs
 (2-drones × 2-sensors × 3-axes ×
 5-amps × 6-times × 6-min × 250-Hz)

< Sample mission in our experiments >

Limitations of Existing Heuristic Filters

Heuristic filters failed to mitigate acoustic injection attacks.

Mitigating Acoustic Attack Using Savzitky-Golay Filter for Gyroscope

Acoustic Injection Attack Examples

