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ABSTRACT   

Recently, Optical Coherence Tomography (OCT) has become one of the preferred clinical techniques for intracoronary 
diagnostic imaging.  Thanks to its high resolution imaging capability, the OCT technique allows to identify microscopic 
features associated with various types of coronary plaque and to track of stent position, malaposition and neo-intimal 
tissue growth after stent implantation. Accurate visualization of stent struts can help to examine the status of implanted 
stents potentially leading to proper treatment of the coronary artery disease. However, unfortunately, current stent 
identification involves time-consuming segmentation algorithms sometimes requiring labor-intensive manual analysis 
process. To resolve the problem, we propose a high-speed automatic segmentation algorithm of intravascular stent struts 
in OCT images. 

Unlike the other "automatic" stent segmentation algorithms, which are mainly based on time-consuming machine 
learning algorithms with manual addition and removal of stent struts for correction during the analysis process, our 
algorithm does not require any manual adjustments of stent struts. Our algorithm first analyzes 10 consecutive cross-
sectional OCT images to take boundary information into account to enhance the accuracy of guide-wire segmentation 
and lumen segmentation. Then, it performs stent segmentation by automatically eliminating guide-wire signals using the 
previous segmentation results. The implementation of our algorithm uses the Intel(R) IPP library on CPU and the CUDA 
technology on GPU, which achieves the average analysis time of 0.28 s/frame and the detection rate ranging from 84% 
to 88.6% for about 120 continuous images per patient.  As such, the proposed algorithm is robust and fast enough to be 
integrated in clinical routine. 
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1. INTRODUCTION 
Heart disease has been one of the main causes of death, and the death probability of heart disease keeps growing over the 
recent years. Among various reasons for heart disease, coronary arteriosclerosis is dominant, thus coronary stent 
implantation is widely-used. Expanding the narrowed coronary arteries with stents to restore coronary artery blood flow 
has shown to be very effective, but like all invasive medical treatments, the stent placement procedure has some risks 
such as blood clotting within the vessel due to stent malapposition. In order to check that the procedure placed stents 
successfully, doctors check the stents right after the procedure in operating rooms, and they also check whether the stents 
are appropriately covered 6 or 12 months after the procedure. 

The high resolution imaging capability of Optical Coherence Tomography (OCT) [1-3] enables accurate visualization of 
intravascular stent struts. Because the ultra high speed of the OCT system allows imaging of the 3-dimensional 
microstructure, it provides more detailed information about the stent struts to medical doctors so that they can treat the 
coronary artery disease more appropriately. Recent developments applied the OCT technology to identify pathologies in 
cardiovascular, retinal, and gastrointestinal tissues [4-6]. 
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However, unfortunately, most of the current stent segmentation algorithms are based on time-consuming methods, such 
as machine learning. Therefore, they take much time [7-9], and some of them require manual adjustments of stent struts [9]. 
Such time-intensive algorithms may be useful for processing huge OCT image data outside operating rooms after the 
procedure, but they take too much time to be usable in operating rooms for clinicians to decide whether additional 
balloon inflation is needed. In this paper, we propose a high-speed automatic stent segmentation algorithm fast enough to 
be usable in operating rooms. 

 

2. METHOD 
The main contribution of our method is to develop a high-speed automatic stent segmentation algorithm usable in 
operating rooms when clinicians perform the stent placement procedure. Our segmentation algorithm is mostly 
automatic; after we set up some system-dependent parameters manually, the algorithm systematically processes the 
patient data without any intervention. Once we set up the parameters, we do not need to adjust them as long as the OCT 
system remains the same. 

The overall structure of the algorithm is shown in Figure 1. 

 

 

Figure 1. Flowchart of the algorithm 

 

The algorithm takes raw binary data as its input and it visualizes the segmented stent information as its output. Instead of 
a complex, time-consuming, monolithic machine learning algorithm, our algorithm consists of a series of simple and fast 
algorithms. We describe each constituent algorithm in the following subsections. 
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2.1 Image processing 

The algorithm begins with huge raw binary patient data. Because of the ultrahigh speed, high-resolution capability of the 
OCT system, the data for one patient is about 7 GB. To effectively process such a huge data, our algorithm uses the 
Intel® IPP library on CPU and the CUDA technology on GPU. The image processing algorithm itself consists of a series 
of small computations. The algorithm takes raw data and background data as inputs, where the background data is a 
constant data for a given OCT system. The algorithm processes the raw binary data in the granularity of A-lines. It first 
subtracts the background information from the raw data to achieve the actual patient data, and it adjusts the data by 
applying window functions such as Hanning and Gaussian window functions. It performs Fast Fourier Transformation 
(FFT) to binary data to get the signals in the electrical frequency domain, and it applies zero padding to align the data. It 
applies inverse-FFT to perform interpolation of the signals in the time domain, applies one more FFT on the interpolated 
and dispersion compensated signals, and finally achieves the resulting image by computing logarithmic scale intensity of 
the frequency signals. The algorithm results are OCT images in polar coordinates. 

As the algorithm describes, all the computations of the image processing algorithm manipulates each A-line without 
using the information of other A-lines, which leads to the parallelization opportunity. Our image processing algorithm 
takes advantage of the embarrassingly parallel features of the CUDA technology on GPU, which improved the algorithm 
performance compared to its predecessor in MATLAB. 

 

2.2 Preprocessing 

Before performing any segmentation algorithms, we perform simple preprocessing steps to adjust the image data. We 
first remove trivial noises caused by a catheter and an optical fiber in each OCT image. To enhance the segmentation 
precision in the later steps, we blur each OCT image by applying the Average filter. Also, in order to enhance the 
accuracy of both guide-wire segmentation and lumen segmentation algorithms, we build “long images” by attaching 10 
OCT images side by side. Even though each step of the algorithm uses one A-line at a time rather than using the 
information of arbitrary A-lines, the segmentation algorithms use local information such as nearby A-line information. 
By attaching 10 images, the algorithm can get nearby A-line information even for the edges of each image, which 
improves the precision of the segmentation algorithms. 

 

2.3 Guide-wire segmentation 

While most stent segmentation algorithms do not consider OCT images with guide wire or they remove guide wire 
during a preprocessing step, we segment guide-wire information and use it for stent segmentation. Unlike the existing 
approaches where treat guide-wire as a noise, we use the guide-wire information to improve the performance of later 
steps of the algorithm. 

While a simple guide-wire segmentation algorithm would include many false alarms, we use the following three 
observations to reduce false positives. First, the position of a guide wire in each OCT image is always in the upper third 
of the image. Secondly, the position of a guide wire seldom changes between adjacent images. Finally, the size of a 
guide wire almost never changes between adjacent images. 

Using these observations, we apply Otsu’s threshold [10] to the long images we built in the preprocessing step to segment 
guide wire. We set up Region of Interest (ROI) and remove noises, which are not a guide-wire, by using the size of the 
guide-wire. Because the position of a guide wire in each image remains almost the same across different images, we 
identify the position pattern of the guide wire and segment guide wire in each image by using the pattern. 

 

2.4 Lumen segmentation 

In addition to the guide-wire segmentation, our algorithm performs lumen segmentation as well to improve the precision 
of the main stent segmentation. Our lumen segmentation is based on Z. Wang et al.’s algorithm [11]. The algorithm 
applies Otsu’s threshold to OCT images and find the brightest pixel for each A-line as a lumen information for the A-
line. When a detected lumen candidate is disconnected, the algorithm connects the disconnected pixels using 
interpolation. 
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However, their algorithm does not work well when it fails to find lumen information for either edge of an OCT image 
because it cannot apply interpolation on it. To resolve the problem, our algorithm uses the long images constructed by 
the preprocessing step to compensate the missing edge information. Using the adjacent images to get the edge 
information leads to more precise lumen segmentation as we verified with our experiments as described in the next 
Section. The algorithm also uses the size and the segmented information of guide wire, which removes more noises in 
this step. 

 

2.5 Image splitting and transformation to Cartesian coordinates 

The long images built at the preprocessing step improves the precisions of the guide-wire and lumen segmentation 
algorithms, but the adjacent image information for image edges is not helpful for our stent segmentation algorithm. 
Before performing the stent segmentation algorithm, we split the long images to single images by splitting one long 
image to 10 images with the original size. Also, we transform the images in Polar coordinates as produced by the image 
processing step to Cartesian coordinates, which are more appropriate for our stent segmentation algorithm as described 
below. 

 

2.6 Stent segmentation 

Like most automatic stent segmentation algorithms [12-15], our algorithm uses the properties of stents presented at each A-
line. Such stent properties include the peak intensity and the existence of a shadow for each A-line. After selecting the 
stent candidates by using the properties, we use the results from both the guide-wire segmentation and the lumen 
segmentation algorithms to eliminate false positives. First, we eliminate the stent candidates which are actually guide 
wire by using the guide-wire segmentation results. Then, we eliminate false positives by calculating the average distance 
between the segmented lumen and the segmented stents and removing outliers. We use the images in Cartesian 
coordinates rather than in Polar coordinates, to process and visualize the coronary artery information without much 
distortion but more like the actual blood vessel. Thanks to pre-calculated segmentation information, the algorithm can 
reduce false positives and improve the accuracy of stent segmentation as we discuss in the next section. 

 

2.7 Visualization 

As we discussed so far, our stent segmentation is fully automatic after the initial set up of the parameters, thus it does not 
require any intervention or inputs from humans. After segmenting the stent information, the algorithm visualizes the 
segmented results so that medical doctors can verify the outcomes. The algorithm provides two kinds of result 
visualization: display of the segmented lumen and stents on images in Cartesian coordinates, and image of en face 
projection. 

By providing the image in Cartesian coordinates rather than in Polar coordinates, the images look more close to the 
actual blood vessel, which make the medical doctor’s job much easier. The medical doctors can easily identify the lumen 
and the stents from the image, and they can quickly detect stent malapposition from the segmented information. While 
each image shows a cross-sectional image of a vessel, the en face project image presents more information with 
longitudinal view of the vessel. 

Currently, the visualization part is still under active development. We currently color the segmented lumen and stents by 
pixels, and we are working on clustering such nearby pixels. We are working on identifying stent malapposition 
automatically by using the distance between the lumen and stents, and we are also working on improving the visual 
quality of the en face project image. 

 

3. RESULTS AND DISCUSSION 
We experimented with our automatic stent segmentation algorithm with 3 sets of patient data, and the results of the 
experiments are shown in Table 1. 
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Table 1 The results of the automatic stent segmentation algorithm 

Dataset 
Number 

Number of  
Images 

Number of 
Stents 

Number of 
Segmented 
Stents 

Accuracy 
(%) 

Execution 
Time 
(sec) 

Execution 
Time per 
Image (sec) 

1 126 1,519 1,313 86.4 35.140 0.279 

2 126 1,087 913 84 35.266 0.280 
3 117 1,106 980 88.6 32.680 0.279 

Total 369 3,712 3,206 86.4 103.086 0.279 
 

The total number of images used is 369 and the total number of stents in the images is 3,712.  Our algorithm segmented 
3,206 stents, which amounts to the average accuracy of 86.4%. While the existing stent segmentation algorithms either 
do not report the execution time, or report 4 to 20 seconds per image, our algorithm takes 0.279 seconds per image which 
is unprecedented. 

There is a clear trade-off between the speed and the accuracy of stent segmentation algorithms. To increase the accuracy, 
we should use complex computations such as machine learning, classification, and active contour methods, but they are 
often too expensive to be usable in operating rooms. On the contrary, to increase the execution performance, we should 
use simple but fast computations as we propose in this paper, but such methods may include too many false positives. 
We believe that our algorithm is fast enough to be usable in operating rooms right after the stent placement procedure so 
that the clinicians can decide whether an additional treatment is necessary or not. Also, our experimental results show 
that the accuracy of the high-speed algorithm is reasonable enough to be helpful for the clinicians to make decisions 
quickly. 

 

4. CONCLUSION 
We present a high-speed automatic stent segmentation algorithm, which divides the problem into a series of simple and 
fast computations to achieve the great performance improvement. Our algorithm performs two more segmentation: 
guide-wire segmentation and lumen segmentation. Each step of the entire stent segmentation algorithm addresses simple 
problems rather quickly and passes the intermediate results to the next step, so that one complex computation takes 
advantage of the staged computations. The high speed and reasonable accuracy of the algorithm make it acceptable for 
clinicians to use in hospital operating rooms to make decisions as to whether additional treatments after a procedure is 
necessary or not. We are actively working on improving the precision, accuracy, and more user-friendly visualization of 
the segmentation results. 
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